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Introduction and motivation

Overview of Coleman integration

Let C be a smooth proper curve overZq = W(Fq). Coleman described a
canonical integral

∫ Q
P ω wheneverω is a meromorphic 1-form onCQq, and

P,Q∈ C(Qq) are points whereω is holomorphic. Properties include:

Linearity:
∫ Q

P (αω1 + βω2) = α
∫ Q

P ω1 + β
∫ Q

P ω2.

Additivity:
∫ R

P ω =
∫ Q

P ω +
∫ R

Q ω .

Change of variables: ifC′ is another such curve, andf : U → U′ is a rigid
analytic map between wide opens, then

∫ Q
P f ∗ω =

∫ f (Q)
f (P)

ω .

Fundamental theorem of calculus:
∫ Q

P df = f (Q)− f (P).
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Introduction and motivation

Application: Chabauty-Coleman method

Let C be a smooth curve overZ[1/N] admitting a compactificationC which is
smooth proper overZ[1/N], with C−C a relative normal crossings divisor.
(E.g., a smooth proper curve, orP1−{0,1,∞}.) Assumep 6 |N.

TheChabauty conditionis

rankJ(C)(Z[1/N]) < dimJ(C).

When this is satisfied,J(C)(Z[1/N]) lies in a closed analytic subspace of
J(C)an, which meetsCan in finitely many points. Equivalently, there exists a
1-form ω onJ(C)an with

∫ P
O ω = 0 for P∈ J(C)(Z[1/N]).

If we can find all pointsP∈ Can where
∫ P

O ω = 0, wemaybe able to
determineC(Z[1/N]).
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Introduction and motivation

Application: Kim’s nonabelian Chabauty method

What if the Chabauty condition fails? Instead ofJ(C), one can work with a
Selmer varietycorresponding to a unipotent quotient ofπgeom

1 (C). Kim
conjectures that a suitable analogue of the Chabauty condition holds for a
sufficiently large quotient (true forP1−{0,1,∞}).

If one can describe the Selmer variety, one can proceed as theoriginal
Chabauty method, but replacing the Coleman integral by an iterated version.
(Cf. talk of Wewers.)
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Introduction and motivation

Application: p-adic heights

One can use Coleman integrals to computep-adic heights on Jacobians of
curves over number fields (Coleman-Gross, Besser). These heights appear in
analogues of the Birch-Swinnerton-Dyer conjecture forp-adicL-functions
(Mazur-Tate-Teitelbaum). (Cf. talk of Besser.)
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A framework for computing Coleman integrals

The fundamental linear system

Fix an open dense subschemeU of CFq, and letφ : V1 → V2 be aq-power
Frobenius lift between two strict neighborhoods of the tube]U[ of U in CQq.
Let ω1, . . . ,ωn be 1-forms forming a basis forH1

dR(V) for V a wide open strict
neighborhood of]U[. We can then write

φ∗ωi = dfi +
n

∑
j=1

Aij ωj

for some functionsfi and somen×n matrix A overQq.
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A framework for computing Coleman integrals

Using the fundamental linear system

Say we want to compute
∫ Q

P ω , for ω a meromorphic 1-form onCQq and
P,Q∈]U[. We can write

ω = df +c1ω1 + · · ·+cnωn

for some functionf and someci ∈ Qq, so it suffices to compute the
∫ Q

P ωi .

Using the fundamental linear system, we write

∫ φ(Q)

φ(P)
ωi =

∫ Q

P
φ∗ωi = fi(Q)− fi(P)+

n

∑
j=1

Aij

∫ Q

P
ωj .

In other words,

∫ Q

P
ωi =

∫ φ(P)

P
ωi +

∫ Q

φ(Q)
ωi + fi(Q)− fi(P)+

n

∑
j=1

Aij

∫ Q

P
ωj .
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A framework for computing Coleman integrals

Using the fundamental linear system (contd.)

The last equation from the previous slide is equivalent to

n

∑
j=1

(A− I)ij

∫ Q

P
ωj = fi(P)− fi(Q)−

∫ φ(P)

P
ωi −

∫ Q

φ(Q)
ωi .

The integrals on the right side are within a single residue disc, where the
formal antiderivative ofωi converges. So we can numerically approximate the
right side of the equation.

The matrixA− I is invertible because the eigenvalues ofA haveC-normq1/2

or q, so we can solve the linear system. (This is almost Coleman’soriginal
construction.)

If q 6= p, it is easier to write down an analogous semilinear system for a
p-power Frobenius liftφp, then derive the linear system for the appropriate
power ofφp.
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A framework for computing Coleman integrals

Teichm̈uller points

In each residue disc, there is a unique pointP with φ(P) = P; this is a
Teichm̈uller point for the mapφ .

When computing Coleman integrals, it may be convenient to first compute the
integral between Teichmüller points in the right discs (for which

∫ φ(P)
P ωi = 0)

and then correct the endpoints afterward.
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Example: hyperelliptic curves

Hyperelliptic curves

Assumep 6= 2. LetC/Zq be a hyperelliptic curve of genusg with a rational
Weierstrass point; we can then writeC as

y2 = P(x)

for P(x) monic of degree 2g+1.

We will take our subschemeU of CFq to be the complement of the Weierstrass
points; i.e.,

U = SpecFq[x,y,z]/(y
2 −P(x),yz−1).
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Example: hyperelliptic curves

Cohomology of hyperelliptic curves

The first de Rham cohomology ofC minus its Weierstrass point is generated
by

xi dx
y

(i = 0, . . . ,2g−1),
xi dx
y2 (i = 0, . . . ,2g).

Moreover, there is a simple procedure to express any 1-form as an exact
1-form plus a linear combination of these, using relations such as:

A(s−2)P′dy
ys ≡

2A′dx
ys−2 (s 6= 2).

This extends to a wide openV in which one removes a closed disc of radius
< 1 around each Weierstrass point.

Kiran S. Kedlaya (MIT, Dept. of Mathematics) Numerical computation of Coleman integrals Rényi Institute, May 20, 2007 15 / 26



Example: hyperelliptic curves

Computing the Frobenius action

We use the Frobenius lift

x 7→ xq

y 7→ yq
(

P(xq)−P(x)q

P(x)q

)1/2

truncated to some appropriatep-adic precision. Again, ifq 6= p, it is easier to
work with ap-power Frobenius instead.
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Implementation and demonstration
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Implementation and demonstration

An implementation inMagma

The computation of Coleman integrals on hyperelliptic curves, using the
above paradigm, was described in the M.Sc. thesis of Igor Gutnik (Ben
Gurion, 2005).

Gutnik produced an implementation inMagma. To our knowledge, this was an
orphan; it has not been tested, optimized, distributed, or used for any
application.

In particular, this work was unbeknownst to me when...
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Implementation and demonstration

An implementation inSAGE

I proposed the numerical calculation of Coleman integrals on hyperelliptic
curves first at Banff (2/2007), then at the Arizona Winter School (3/2007).

An implementation forg = 1,q = p was developed inSAGE mostly by Robert
Bradshaw, using an implementation of the Frobenius calculation for
g = 1,q = p developed at MSRI (6/2006) by Bradshaw, Jennifer
Balakrishnan, David Harvey, and Liang Xiao.

With Bradshaw, we extended this tog arbitrary,q = p. (Note:ω is only
allowed to have poles at Weierstrass points.) This became available inSAGE
version 2.5.
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Implementation and demonstration

A word from our sponsor: AboutSAGE

SAGE is anopen-sourceproject organized by William Stein, to develop a
high-level system for computational algebra, in the style of Magma but built on
the common scripting languagePython. AlthoughSAGE is very much a work
in progress, it has already acquired some rather sophisticated functionalities.
(This is partly achieved by incorporating other open-source packages:GAP,
PARI, Singular, etc.)

See
http://www.sagemath.org/

for more information.
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Implementation and demonstration

Demonstration

Let’s see a demonstration of theSAGE implementation, using theSAGE
notebook interface.

(Switch now to
http://localhost:8000

for the demonstration.)
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What to do next?
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What to do next?

Iterated integrals

There is also a good theory of iterated Coleman integrals, e.g.,

∫ Q

P
ω1ω2 =

∫ Q

P
ω1(R)

∫ Q

R
ω2.

One can use a similar construction to compute these. But can one avoid
having to compute all of the≤ k-fold integrals in the process of computing a
single one?

More generally, one could start with a crystal onC; the usual Coleman
integrals come from the trivial crystal, and iterated Coleman integrals come
from unipotent crystals (Besser).
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What to do next?

Beyond the hyperelliptic case

It should be possible to use this setup to compute Coleman integrals for any
family where one can compute the Frobenius action on rigid cohomology.

For instance, one can do this fornondegenerate curves
(Castryck-Denef-Vercauteren).

Also, one should allow working over a general finite extension of Zp.
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What to do next?

Beyond good reduction

One can also compute Coleman integrals on curves with semistable reduction
(depending on a choice of branch for thep-adic logarithm). This has been
done for polylogarithms (Besser-de Jeu).

In the general case, one may need to use an explicit description of the
Hyodo-Kato Frobenius and monodromy actions (Coleman-Iovita).
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What to do next?

Experiments with Chabauty’s method

Let C be a smooth proper curve overQ with good reduction atp, satisfying
the Chabauty condition

rankJ(C)(Q) < g(C)

and containing a rational pointO.

To high numerical accuracy, we can find a basisω1, . . . ,ωr of the space of
holomorphic 1-forms onJ(C)an vanishing onJ(C)(Q), then find the points
P∈ Can(Qp) where

∫ P
O ωi = 0 for all i. This includes all ofC(Q) but might

include extra points.

Question: are the extra points algebraic? For instance, do they all lie in the
intersection ofC with the divisible closure ofJ(C)(Q)?
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