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Overview of Coleman integration

Let C be a smooth proper curve ovég = W(Fqy). Coleman described a
canonical integrafF? w wheneverw is a meromorphic 1-form o@g,, and
P,Q € C(Qq) are points wherev is holomorphic. Properties include:
@ Linearity: fF?(awl +Bwp) =a fF?wl +B fF(? .
o Additivity: [Fw= [Fw+ [Sw.
@ Change of variables: i€’ is another such curve, afid U — U’ is a rigid
analytic map between wide opens, thfﬂpcr’w*w = fff((F?)> w.

o Fundamental theorem of calculug?df = f(Q) —f (P).
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Application: Chabauty-Coleman method

Let C be a smooth curve ovéi{1/N] admitting a compactificatio® which is
smooth proper oveZ[1/N], with C — C a relative normal crossings divisor.
(E.g., a smooth proper curve, Bt — {0,1,0}.) Assumep /N.

TheChabauty conditionis
rankJ(C)(Z[1/N]) < dimJ(C).

When this is satisfied)(C)(Z[1/N]) lies in a closed analytic subspace of
J(C)3", which meet<C?"in finitely many points. Equivalently, there exists a
1-form w on J(C)2" with [§ w = 0 for P € J(C)(Z[1/N]).

If we can find all points®? € C&" wherefgw = 0, wemaybe able to
determineC(Z[1/N]).
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Application: Kim’s nonabelian Chabauty method

What if the Chabauty condition fails? InsteadJd€), one can work with a
Selmer varietycorresponding to a unipotent quotientrdf°"(C). Kim
conjectures that a suitable analogue of the Chabauty ¢ondiblds for a
sufficiently large quotient (true fd! — {0,1, «}).

If one can describe the Selmer variety, one can proceed asitheal
Chabauty method, but replacing the Coleman integral byesiatiéd version.
(Cf. talk of Wewers.)
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Application: p-adic heights

One can use Coleman integrals to computalic heights on Jacobians of
curves over number fields (Coleman-Gross, Besser). Thégethappear in
analogues of the Birch-Swinnerton-Dyer conjecturepadic L-functions
(Mazur-Tate-Teitelbaum). (Cf. talk of Besser.)

o & - =T E 9ac

(ENSHIGE EVER (Y NMET M IV EVGEINEN[:  Numerical computation of Coleman integral: Reényi Institute, May 20, 2007 712€



Contents

© A framework for computing Coleman integrals

[m]

(ENSHIGE EVER (Y NMET M IV EVGEINEN[:  Numerical computation of Coleman integral:

=

= = E DA
Reényi Institute, May 20, 2007

8/ 2€



The fundamental linear system

Fix an open dense subschetef Cr,, and letg : V1 — V, be ag-power
Frobenius lift between two strict neighborhoods of the tjihgof U in Cq,.
Let e, ..., be 1-forms forming a basis fotl;(V) for V a wide open strict
neighborhood ofU[. We can then write

n
¢ =di+ ) Aj
=i

for some functiond; and somen x n matrix A over Qj.
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A framework for computing Coleman integral

Using the fundamental linear system
Say we want to computﬁ,? w, for w a meromorphic 1-form o€q, and
P,Q €]U[. We can write

w=df +cre +--- 4+ Chon

for some functiorf and some; € Qq, so it suffices to compute thﬁQoq.
Using the fundamental linear system, we write

[Pa-[foa-1Q-tP+3af
(p(P) - p — 1 | J; j b (q

In other words,

/PQQ:/P«J(P)m+/:Q)aa+fi(Q)—fi(P)+jiAij/PQ%
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Using the fundamental linear system (contd.)

The last equation from the previous slide is equivalent to

i Lo [Ta

The integrals on the right side are within a single residse,dvhere the
formal antiderivative oty converges. So we can numerically approximate t
right side of the equation.

The matrixA— | is invertible because the eigenvaluesAdiaveC-normgq?/2

or g, so we can solve the linear system. (This is almost Colenmigimal
construction.)

If q+# p, itis easier to write down an analogous semilinear systera fo

p-power Frobenius liftg, then derive the linear system for the appropriate
power ofg,.
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A framework for computing Coleman integral

Teichniiller points

In each residue disc, there is a unique péintith ¢(P) = P; this is a
Teichnilller point for the mapg.

When computing Coleman integrals, it may be convenient $b édmmpute the

integral between Teichmuller points in the right discs (fdich fF?(P) w =0)
and then correct the endpoints afterward.
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Example: hyperelliptic curves|

Hyperelliptic curves

Assumep # 2. LetC/Zq be a hyperelliptic curve of gengpwith a rational
Weierstrass point; we can then wrifeas

V2= P()

for P(x) monic of degree @+ 1

We will take our subschemid of Cr, to be the complement of the Weierstras
points; i.e.,

U = Spedq(x,y,2/(y* — P(x),yz— 1).
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Example: hyperelliptic curves|

Cohomology of hyperelliptic curves

The first de Rham cohomology @f minus its Weierstrass point is generated
by

X dx

i
S (=0..20-1) X dx

Moreover, there is a simple procedure to express any 1-feramaxact
1-form plus a linear combination of these, using relatianshsas:

—_2\P 2N
A(s ys)P dyE ySdzx (s£2).

This extends to a wide opénin which one removes a closed disc of radius
< 1 around each Weierstrass point.
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Example: hyperelliptic curves|

Computing the Frobenius action

We use the Frobenius lift

X — x4
P(x4) — P(x)4\ /2
(o)

truncated to some approprigieadic precision. Again, i§ # p, it is easier to
work with ap-power Frobenius instead.
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Implementation and demonstratio

An implementation iMagma

The computation of Coleman integrals on hyperelliptic esfwsing the

above paradigm, was described in the M.Sc. thesis of Igonits (Ben
Gurion, 2005).

Gutnik produced an implementationMagma. To our knowledge, this was an

orphan; it has not been tested, optimized, distributedseddor any
application.

In particular, this work was unbeknownst to me when...

o = = E E DA
(ENSHIGE EVER (Y NMET M IV EVGEINEN[:  Numerical computation of Coleman integral: Rényi Institute, May 20, 2007 18/ 26



An implementation irBAGE

| proposed the numerical calculation of Coleman integralfyperelliptic
curves first at Banff (2/2007), then at the Arizona Winter &ut(3/2007).

An implementation fog = 1,q = p was developed ISAGE mostly by Robert
Bradshaw, using an implementation of the Frobenius céiouldor
g=1,q=pdeveloped at MSRI (6/2006) by Bradshaw, Jennifer
Balakrishnan, David Harvey, and Liang Xiao.

With Bradshaw, we extended thisdgarbitrary,q = p. (Note: w is only
allowed to have poles at Weierstrass points.) This becamitable inSAGE
version 2.5.
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A word from our sponsor: AboBAGE

SAGE is anopen-sourceroject organized by William Stein, to develop a
high-level system for computational algebra, in the styl®agma but built on
the common scripting langua@gthon. AlthoughSAGE is very much a work
in progress, it has already acquired some rather sophiti¢anctionalities.
(This is partly achieved by incorporating other open-seyackagesGAP,
PARI, Singular, etc.)

See

http://www.sagemath.org/
for more information.
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Implementation and demonstratio

Demonstration

Let’s see a demonstration of tBeGE implementation, using th@AGE
notebook interface.

(Switch now to

http://localhost:8000
for the demonstration.)
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What to do next?

Iterated integrals

There is also a good theory of iterated Coleman integrais, e.

/F)Qaaa&:/PQah(R)/RQa&.

One can use a similar construction to compute these. Butmaawmid

having to compute all of th& k-fold integrals in the process of computing a
single one?

More generally, one could start with a crystal ©nthe usual Coleman

integrals come from the trivial crystal, and iterated Cad@nntegrals come
from unipotent crystals (Besser).
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What to do next?

Beyond the hyperelliptic case

It should be possible to use this setup to compute Colemagrit for any
family where one can compute the Frobenius action on rigitoomlogy.

For instance, one can do this foondegenerate curves
(Castryck-Denef-Vercauteren).

Also, one should allow working over a general finite extensioZ.
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What to do next?

Beyond good reduction

One can also compute Coleman integrals on curves with sapteésteduction
(depending on a choice of branch for fx@dic logarithm). This has been
done for polylogarithms (Besser-de Jeu).

In the general case, one may need to use an explicit descriptithe
Hyodo-Kato Frobenius and monodromy actions (Colemantavi
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What to do next?

Experiments with Chabauty’s method

Let C be a smooth proper curve ov@rwith good reduction ap, satisfying
the Chabauty condition

rankJ(C)(Q) < g(C)
and containing a rational poiQ.

To high numerical accuracy, we can find a basis. .., a of the space of
holomorphic 1-forms od(C)2" vanishing onJ(C)(Q), then find the points

P e C*(Qp) wherefgoq = 0 for alli. This includes all of2(Q) but might
include extra points.

Question: are the extra points algebraic? For instancehajodll lie in the
intersection ofC with the divisible closure of(C)(Q)?
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