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Zeta functions of algebraic varieties

Let Fq be a finite field of characteristic p. After Artin, Schmidt, and Weil,
we define the zeta function of a variety X over Fq as the formal Dirichlet
series

ζ(X , s) =
∏
x

(1−#κ(x)−s)−1,

where x runs over closed points of X and κ(x) denotes the residue field.
(Equivalently, x runs over Galois orbits of Fq-rational points and κ(x)
denotes the minimal field of definition.)

From now on, we write ζ as a formal power series in T = q−s . Then

ζ(X ,T ) = exp

( ∞∑
n=1

T n

n
#X (Fqn)

)
.
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Examples of zeta functions

From the formula

ζ(X ,T ) = exp

( ∞∑
n=1

T n

n
#X (Fqn)

)
,

one can compute ζ(X ,T ) in some explicit examples. For one:

ζ(Pd
Fq
,T ) =

1

(1− T )(1− qT ) · · · (1− qdT )
.

For another, if X is an elliptic curve over Fq, then

ζ(X ,T ) =
1− aT + qT 2

(1− T )(1− qT )
, a = q + 1−#X (Fq).

Based on these (and more) examples, Weil predicted that ζ(X ,T ) obeys
analogues of the properties of the Riemann zeta function (analytic
continuation, functional equation, Riemann hypothesis).
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Rationality of the zeta function

The first of the Weil conjectures on zeta functions of algebraic varieties is:

Theorem

The power series ζ(X ,T ) represents a rational function of T .

This is widely known as a consequence of the construction of étale
cohomology by Grothendieck et al. However, that was not the first proof!

Theorem (Dwork, 1960)

The power series ζ(X ,T ) is p-adic meromorphic: it is the ratio of two
power series over Qp with infinite radii of convergence.

Since ζ(X ,T ) converges for T ∈ C small (trivially), an argument of Borel
(1894) then shows that ζ(X ,T ) is rational.
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Zeta functions as empirical data

We are interested in algorithms that given an explicit definition of X (i.e.,
defining equations), returns the rational function ζ(X ,T ). Why?

For X a curve over Fq, ζ(X ,T ) determines #X (Fq). Questions
about this count, especially its extreme values, were originally inspired
by algebraic coding theory (Goppa construction) and have been
studied for decades; see http://manypoints.org.

For X a curve over Fq, ζ(X ,T ) determines #J(X )(Fq). This is
relevant for cryptography, especially when X is of genus ≤ 3.

For X a variety over Fq, ζ(X ,T ) contains (via the Tate conjecture)
information about algebraic cycles on X , e.g., the Picard number.

Computation of many types of exponential sums can be encoded into
the problem of computing ζ(X ,T ) for suitable X .

...
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L-functions as empirical data

For X a variety over a number field, its associated L-functions are Euler
products derived from zeta functions of the reductions of X to various
finite fields. We are also interested in computing these. Why?

Special values of these L-functions carry arithmetic information via
many conjectures (Birch–Swinnerton-Dyer, Beilinson, Deligne, etc.).

Additional arithmetic information can be seen in the statistics of
variation of Euler factors, via many conjectures (Sato-Tate,
Fité–Rotger–K–Sutherland, Serre, etc.).

These L-functions are conjecturally related to automorphic forms via
the Langlands correspondence. One hopes both to collect evidence to
help make precise new cases of the correspondence (e.g., genus 2
curves and Siegel modular forms), and to use existing results to
compute automorphic L-functions.

Some L-functions may have arithmetic properties reminiscent of
mirror symmetry (???).
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How not to compute a zeta function (in general)

In most cases of interest, the Weil conjectures bound the degree of
ζ(X ,T ) in terms of Betti numbers. One can then compute ζ(X ,T ) by
simply enumerating the sets #X (Fqn) for enough values of n.

This is almost never practical! One can occasionally gain something by
exploiting geometric information, e.g., automorphisms or correspondences
which impose constraints on the factorization of ζ(X ,T ).

However, direct counting offers no way to leverage additional constraints
on ζ(X ,T ) provided by the Weil conjectures, notably:

archimedean estimates provided by the Riemann Hypothesis;

p-adic divisibility provided by the “Newton above Hodge” property of
crystalline cohomology.
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Zeta functions via Weil cohomology

A Weil cohomology theory provides an interpretation

ζ(X ,T ) =
∏
i

det(1− TFi ,Vi )
(−1)i+1

for some endomorphism Fi on some vector spaces Vi over some field of
characteristic 0. One can try to compute ζ(X ,T ) using this formula.

Unfortunately, étale cohomology is usually1 very hard to handle from an
explicit computational point of view.

Much more progress has been made using p-adic cohomology in the spirit
of Dwork. While there are several related approaches, we will focus on the
construction of Monsky-Washnitzer, which has a close relationship with
algebraic de Rham cohomology.

1One exception is curves of low genus, where one can handle it via torsion points on
Jacobian varieties.
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A paradigm for zeta functions via p-adic cohomology

Let U be a smooth affine variety over Q (for simplicity). For some N > 0,
it extends to a nice scheme2 U over Z[1/N].

The algebraic de Rham cohomology H i
dR(U,Q) is the cohomology of (the

global sections of) the de Rham complex

0→ OU → Ω1
U/Q → Ω2

U/Q → · · · → Ωd
U/Q → 0 (d = dim(U)).

Typically, the most interesting group occurs for i = d , as the other ones
can be described in terms of cohomology of lower-dimensional varieties
(Lefschetz hyperplane theorem).

To use Hd
dR(U,Q) to compute zeta functions, it is critical to have a good

algorithm to reduce pole orders at infinity in cohomology. Physicists may
have more experience with this than number theorists...

2i.e., a smooth proper scheme minus a relative normal crossings divisor
Kiran S. Kedlaya (UC San Diego) Recent progress in computing zeta functions June 22, 2015 9 / 19
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have more experience with this than number theorists...
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de Rham cohomology and zeta functions

Let p be a prime not dividing N. Then Up (the reduction mod p) has a
Frobenius endomorphism which does not typically lift to U; but it does lift
to a p-adic completion of U. By formally applying this action to
differentials, one obtains3 endomorphisms Fi on H i

dR(U,Qp).

Theorem (Monsky-Washnitzer)

We have

ζ(Up,T ) =
d∏

i=0

det(1− piF−1i T ,H i
dR(U,Qp))(−1)

i+1
.

Using p-adic numerical arithmetic, one can compute enough coefficients of
ζ(Up,T ) with enough p-adic accuracy to determine them uniquely.

3This part is not formal; it amounts to saying that the de Rham cohomology doesn’t
change when you take the completion. This fails for the usual p-adic completion, so the
slightly smaller weak completion is needed instead.
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Hyperelliptic curves (K, 2001)

For example, let P ∈ Q[x ] be a polynomial of degree 2g + 1 with no
repeated roots, and put

U = SpecQ[x , y , z ]/(y2 − P(x), yz − 1).

Then for ± the eigenspaces of the involution y 7→ −y ,

H1
dR(U,Q) = H1

dR(U,Q)+ ⊕ H1
dR(U,Q)−

=

(
2g⊕
i=0

Q
dx

y2

)
⊕

(
2g−1⊕
i=0

Q
dx

y

)
.

It is easy to produce relations in H1
dR(U,Q) to reduce pole orders, e.g.,

(A(x)P(x) + B(x)P ′(x))dx

y2n+1
≡ A(x) dx

y2n−1
+

2B ′(x) dx

(2n − 1)y2n−1

0 ≡ (2dxd−1P(x) + xdP ′(x)) dx

(2d + 2g + 1)y
=

(xd+2g + · · · )dx
y

.
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Hyperelliptic curves (continued)

One constructs a Frobenius lift by declaring that x maps to xp; the image
of y must then be yp times the square root of P(xp)/P(x)p congruent to
1 modulo p, in the (weak) p-adic completion of O(U).

One can then (up to a suitably small p-adic error, in order to make the
computation finite and tractable) apply this Frobenius lift formally to each
basis differential of H i

dR(U,Q), reduce pole orders to get the matrix of
action of Frobenius, and read off ζ(U,T ). This is extremely efficient in
practice! (Implementations exist in Magma, Sage.)

With some extra effort, one can treat more general hyperelliptic curves,
including characteristic 2 (Harrison, Denef-Vercauteren).

In fact, it should be possible to make this method possible and practical
for arbitrary curves! An approach has recently been proposed by Tuitman,
who is also working on an implementation.
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Smooth hypersurfaces in Pn (Abbott-K-Roe, 2009)

Let f ∈ Q[x0, . . . , xn] be a homogeneous polynomial of degree d cutting
out a smooth hypersurface. Its complement is

U = SpecQ[x0, . . . , xn, f
−1]0.

It is convenient to write differentials as degree 0 multiples of

Ω =
n∑

i=0

(−1)ixi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

The reduction of pole orders is due to Griffiths-Dwork, using relations

∂ig

f m
Ω ∼= m

g(∂i f )

f m+1
Ω, ∂i =

∂

∂xi
.

In particular, one can construct a basis of Hn
dR(U,Q) consisting of forms of

the shape gΩ/f i for i ∈ {1, . . . , n}.
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Smooth hypersurfaces in Pn (continued)

One constructs a Frobenius lift by declaring that xi maps to xpi for
i = 0, . . . , d ; the image of f −1 must then be f −p times the reciprocal of
f (xp)/f (x)p, in the (weak) p-adic completion of O(U).

One can then proceed as for hyperelliptic curves. However, a crude
implementation of this idea (as in AKR, 2009) only yields practical results
in a few small cases (e.g., n = 3, d = 4, p < 20).

A much better organization of the reduction process has been proposed by
Harvey. Using this idea, Costa was able to calculate examples with n = 3,
d = 4, p < 216.

Using similar methods, Costa also succeeded in computing a few examples
with n = 4, d = 5, p < 20 in the Dwork pencil of quintic threefolds.

It is unclear how to make this method practical for arbitrary surfaces and
threefolds. Instead, we focus on an easy generalization that will handle
many new families of K3 surfaces and CY threefolds.
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Toric varieties

Let ∆ be a polytope with vertices in Qn and choose a lattice L ⊂ Qn. We
may then define a (projective, normal) toric variety X carrying an ample
line bundle O(1) such that for n = 0, 1, . . . , Γ(X ,O(n)) is the Q-span of
L ∩ n∆. In particular, X contains an open dense torus4 T = SpecQ[L]
which acts on X , and X admits a locally closed stratification by T -orbits.

For example, if ∆ is the standard unit simplex (whose vertices are 0 and
the standard basis) and L = Zn, then X = Pn with the usual O(1).

More generally, for any positive integers a0, . . . , an, if we keep the same ∆
but take L = (a1/a0)Z + · · ·+ (an/a0)Z, we get the weighted projective
space Pn(a0, . . . , an).

4By fixing a basis of L, we can write Q[L] ∼= Q[x±
1 , . . . , x±

n ].
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Examples of interesting toric hypersurfaces

By a result of Reid, there are 95 different polytopes ∆ for which the
generic section of O(1) in X is a K3 surface. This list can also be found in
Yonamura [Tôhoku, 1990] or this online database (with codimension=1):

http://www.grdb.co.uk/forms/k3

By an analogous calculation of Kreuzer–Sisask–Skarke, there are 7555
different polytopes ∆ for which the generic section of O(1) in X is a CY
threefold. This list can be seen by querying:

http://www.grdb.co.uk/forms/cy3hsf
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generic section of O(1) in X is a K3 surface. This list can also be found in
Yonamura [Tôhoku, 1990] or this online database (with codimension=1):

http://www.grdb.co.uk/forms/k3

By an analogous calculation of Kreuzer–Sisask–Skarke, there are 7555
different polytopes ∆ for which the generic section of O(1) in X is a CY
threefold. This list can be seen by querying:

http://www.grdb.co.uk/forms/cy3hsf
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Nondegenerate hypersurfaces

We say f ∈ Q[L], or the hypersurface Z it cuts out, is nondegenerate if Z
has transverse intersection with each T -orbit. This condition holds
generically, and is easy to test on a computer.

For f nondegenerate and U = T − Z , there is a simple analogue5 of the
Griffiths-Dwork reduction process for computing Hn

dR(U,Q): for any
Q[L] ∼= Q[x±1 , . . . , x

±
n ], Ωn

U/Q is generated by

ω = (dx1/x1) ∧ · · · ∧ (dxn/xn)

and for any derivation ∂ = i1
∂
∂x1

+ · · ·+ in
∂
∂xn

we have relations6

gf

f m+1
ω ∼=

g

f m
ω,

g∂(f )

f m+1
ω ∼=

∂g

mf m
ω.

5Not a generalization per se, as we ignore hypersurfaces which are smooth but not
nondegenerate. These can be handled, but with much extra complexity.

6Conveniently, these reductions preserve logarithmic singularities on X − T .
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Controlled reduction for nondegenerate hypersurfaces

In the context of computing zeta functions, one needs to apply a reduction
process to forms generated by applying Frobenius. These turn out to be
quite sparse!

By doing some extra linear algebra, we can construct extra relations which
can be used to perform controlled reduction, in which sparseness is
preserved: any form supported on a translate of n∆ reduces to another
such form.

This is inspired by some related work of Harvey, who in the case of
hyperelliptic curves obtained additional optimizations for the problem of
computing L-functions (i.e., starting with a given U and reducing modulo
many different primes). These optimizations are possible here too.
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To come...

Costa–Harvey–K have developed an algorithm to compute zeta functions
of nondegenerate toric hypersurfaces, following the above framework. The
preceding examples of Costa are special cases of this. (Harvey has also
implemented the case of plane quartics.)

Project for ICERM, fall 2015: implement this in some cases (e.g., for ∆ a
simplex), then generate interesting examples!

Possible followup: do something similar for complete intersections in toric
varieties.

Are there other cases of pressing interest? Please let me know...
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