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Context: torsion points in semiabelian varieties

A general theorem

Let A be a semiabelian variety over C (i.e., an extension of an abelian
variety by a torus). Let Γ be a finitely generated subgroup of A(C). Let Γ
be the divisible closure of Γ.

For X a closed subscheme of A, define the Γ-torsion closure of A to be the
Zariski closure of X ∩ Γ. This is a closure operation (i.e., it is idempotent).

For example, define a Γ-torsion coset of X to be a translate of a
semiabelian subvariety of A by an element of Γ. Any such subscheme is its
own Γ-torsion closure.

Theorem (McQuillan, 1995)

The Γ-torsion closure of any closed subscheme X of A is a finite union of
Γ-torsion cosets.

In particular, there is a “finite” description of X ∩ Γ. But can one find this
description explicitly in explicit instances?

Kiran S. Kedlaya Effective multiplicative Manin-Mumford UCSD, May 6, 2020 3 / 23



Context: torsion points in semiabelian varieties

A general theorem

Let A be a semiabelian variety over C (i.e., an extension of an abelian
variety by a torus). Let Γ be a finitely generated subgroup of A(C). Let Γ
be the divisible closure of Γ.

For X a closed subscheme of A, define the Γ-torsion closure of A to be the
Zariski closure of X ∩ Γ. This is a closure operation (i.e., it is idempotent).

For example, define a Γ-torsion coset of X to be a translate of a
semiabelian subvariety of A by an element of Γ. Any such subscheme is its
own Γ-torsion closure.

Theorem (McQuillan, 1995)

The Γ-torsion closure of any closed subscheme X of A is a finite union of
Γ-torsion cosets.

In particular, there is a “finite” description of X ∩ Γ. But can one find this
description explicitly in explicit instances?

Kiran S. Kedlaya Effective multiplicative Manin-Mumford UCSD, May 6, 2020 3 / 23



Context: torsion points in semiabelian varieties

A general theorem

Let A be a semiabelian variety over C (i.e., an extension of an abelian
variety by a torus). Let Γ be a finitely generated subgroup of A(C). Let Γ
be the divisible closure of Γ.

For X a closed subscheme of A, define the Γ-torsion closure of A to be the
Zariski closure of X ∩ Γ. This is a closure operation (i.e., it is idempotent).

For example, define a Γ-torsion coset of X to be a translate of a
semiabelian subvariety of A by an element of Γ. Any such subscheme is its
own Γ-torsion closure.

Theorem (McQuillan, 1995)

The Γ-torsion closure of any closed subscheme X of A is a finite union of
Γ-torsion cosets.

In particular, there is a “finite” description of X ∩ Γ. But can one find this
description explicitly in explicit instances?

Kiran S. Kedlaya Effective multiplicative Manin-Mumford UCSD, May 6, 2020 3 / 23



Context: torsion points in semiabelian varieties

A general theorem

Let A be a semiabelian variety over C (i.e., an extension of an abelian
variety by a torus). Let Γ be a finitely generated subgroup of A(C). Let Γ
be the divisible closure of Γ.

For X a closed subscheme of A, define the Γ-torsion closure of A to be the
Zariski closure of X ∩ Γ. This is a closure operation (i.e., it is idempotent).

For example, define a Γ-torsion coset of X to be a translate of a
semiabelian subvariety of A by an element of Γ. Any such subscheme is its
own Γ-torsion closure.

Theorem (McQuillan, 1995)

The Γ-torsion closure of any closed subscheme X of A is a finite union of
Γ-torsion cosets.

In particular, there is a “finite” description of X ∩ Γ. But can one find this
description explicitly in explicit instances?

Kiran S. Kedlaya Effective multiplicative Manin-Mumford UCSD, May 6, 2020 3 / 23



Context: torsion points in semiabelian varieties

A general theorem

Let A be a semiabelian variety over C (i.e., an extension of an abelian
variety by a torus). Let Γ be a finitely generated subgroup of A(C). Let Γ
be the divisible closure of Γ.

For X a closed subscheme of A, define the Γ-torsion closure of A to be the
Zariski closure of X ∩ Γ. This is a closure operation (i.e., it is idempotent).

For example, define a Γ-torsion coset of X to be a translate of a
semiabelian subvariety of A by an element of Γ. Any such subscheme is its
own Γ-torsion closure.

Theorem (McQuillan, 1995)

The Γ-torsion closure of any closed subscheme X of A is a finite union of
Γ-torsion cosets.

In particular, there is a “finite” description of X ∩ Γ. But can one find this
description explicitly in explicit instances?

Kiran S. Kedlaya Effective multiplicative Manin-Mumford UCSD, May 6, 2020 3 / 23



Context: torsion points in semiabelian varieties

Special cases of the general theorem: rational points

Let X0 be a curve of genus g ≥ 2 over a number field K . Let A0 be the
Jacobian of X and put X := X0 ×K C,A := A0 ×K C. Assuming
X0(K ) 6= ∅, we can choose a point P ∈ X0(K ) and use it to define an
embedding X0 ↪→ A0 whose image is not contained in any strict abelian
subvariety of A0 (and is not A0 because g ≥ 2).

Let Γ be the group A0(K ) ⊆ A(C). By the Mordell-Weil theorem, Γ is
finitely generated; we may thus deduce from the theorem that X ∩ Γ is a
finite set. In particular X ∩ Γ = X0(K ) is a finite set, so the Mordell
conjecture holds. That is, McQuillan generalizes Faltings; its proof is
based on a theorem of Vojta which itself generalizes Faltings.

However, there is no fully general method∗ for determining X0(K ),
although there are good practical methods (e.g., Chabauty-Coleman).

∗Disclaimer: Mochizuki’s claimed proof of the ABC conjecture would provide such a
method, albeit probably not a practical one.
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Context: torsion points in semiabelian varieties

Special case of the general theorem: torsion points

In this talk, we will mostly be interested in the case Γ = 0. In this case, we
refer to Γ-torsion cosets and closures also as torsion cosets and closures.

In this case, the general theorem specializes to a theorem of Hindry,
answering a conjecture of Lang. If we further specialize to the setting on
the previous slide, we get a theorem of Raynaud answering a conjecture of
Manin-Mumford: a pointed curve contains only finitely many points which
define torsion classes in the Jacobian.

For Raynaud’s theorem, many algorithms can compute torsion points on a
curve (e.g., Coleman’s method of p-adic integration); see Poonen’s survey.
Many examples are known (e.g., Fermat curves, modular curves).

For Hindry’s theorem, we do not know of a general algorithm to compute
torsion closures within an arbitrary semiabelian variety. However, if we
specialize to tori, then there are very good algorithms; the rest of the talk
will be about this special case.
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Context: torsion points in semiabelian varieties

Special case of the general theorem: torsion points on tori

From now on, we assume† that A is a torus and Γ = 0. In this case, the
general theorem again restricts to a previously known result.

Theorem (Laurent, 1984)

The torsion closure of any closed subscheme of A is a finite union of
torsion cosets.

To make this more concrete, write A = SpecC[x±1 , . . . , x
±
n ]. Since A is

affine and noetherian, any closed subscheme X can be defined by some
finite collection f1, . . . , fm of Laurent polynomials, and we are trying to
classify solutions of the equation

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0

where x1, . . . , xn are roots of unity.
†That said, it would be interesting to see whether the techniques for tori can be

adapted to other semiabelian varieties.
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Context: torsion points in semiabelian varieties

Torsion points on tori

Again, we are trying to classify solutions of the equation

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0

where x1, . . . , xn are roots of unity. The theorem predicts that the
solutions can be described as a finite number of parametric solutions

xi = ci

l∏
j=1

y
eij
j

where eij are some fixed integers, ci are some fixed roots of unity, and
y1, . . . , yl are parameters (which can specialize to any roots of unity).
There is a unique minimal list of such solutions, up to permutation and
reparametrization.

The problem is, given an explicit list f1, . . . , fm, to compute (perhaps on a
computer) the minimal list of parametric solutions. To simplify, let’s
assume that the fi have coefficients in a cyclotomic field (including Q).
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Cyclotomic relations: the Conway-Jones method
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Cyclotomic relations: the Conway-Jones method

A theorem of Conway-Jones

Theorem (Conway-Jones, 1979)

Let S be a set of at most 9 roots of unity with zero sum. Suppose that S
does not contain {α,−α} or {α, ζ3α, ζ

2
3α} for any α. Then up to

rotation, S is one of

{1, ζ5, ζ
2
5 , ζ

3
5 , ζ

4
5} {−ζ3,−ζ2

3 , ζ5, ζ
2
5 , ζ

3
5 , ζ

4
5},

{1, ζ7, ζ
2
7 , ζ

3
7 , ζ

4
7 , ζ

5
7 , ζ

6
7}, {1, ζ5, ζ

4
5 ,−ζ3ζ

2
5 ,−ζ2

3ζ
2
5 ,−ζ3ζ

3
5 ,−ζ2

3ζ
3
5},

{−ζ3,−ζ2
3 , ζ7, ζ

2
7 , ζ

3
7 , ζ

4
7 , ζ

5
7 , ζ

6
7},

{ζ5, ζ
4
5 ,−ζ3,−ζ2

3 ,−ζ3ζ
2
5 ,−ζ2

3ζ
2
5 ,−ζ3ζ

3
5 ,−ζ2

3ζ
3
5},

{1, ζ2
7 , ζ

3
7 , ζ

4
7 , ζ

5
7 ,−ζ3ζ7,−ζ2

3ζ7,−ζ3ζ
6
7 ,−ζ2

3ζ
6
7},

{1,−ζ3ζ5,−ζ2
3ζ5,−ζ3ζ

2
5 ,−ζ3ζ

2
5 ,−ζ3ζ

3
5 ,−ζ2

3ζ
3
5 ,−ζ3ζ

4
5 ,−ζ2

3ζ
4
5}.

This improves a similar result of W lodarski, by providing a technique for
resolving similar problems for any fixed number of roots of unity.
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Cyclotomic relations: the Conway-Jones method

Ingredients of the theorem

The key lemma of Conway-Jones is the following.

Lemma (Conway-Jones)

Let S be a (multi)set of roots of unity with zero sum, which is minimal:
no nonempty proper (multi)subset of S sums to zero.

(a) There exists a rotation of S consisting of roots of unity of squarefree
order.

(b) Let N be the minimal integer for which S admits a rotation consisting
of N-th roots of unity. Then

#S ≥ 2 +
∑
p|N

(p − 2).

Both statements follow from basic facts about cyclotomic fields.
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Cyclotomic relations: the Conway-Jones method

Applications of Conway-Jones

A literature search turns up applications of Conway-Jones in areas such as:

Euclidean and non-Euclidean geometry;

operator algebras;

representation theory of finite groups;

Kähler geometry;

knot theory;

dynamical systems;

graph theory;

and more.
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Cyclotomic relations: the Conway-Jones method

An example of Grubb and Woll

Let N ≥ 4 be an integer. Let s be the ratio of the lengths of two diagonals
(or sides) of a regular N-gon, which cannot occur for any smaller value of
N. What is the degree of the number field Q(s)?

This question can be answered‡ by applying Conway-Jones to classify
solutions of the equation

x1 + x−1
1

x2 + x−1
2

=
y1 + y−1

1

y2 + y−1
2

in roots of unity, then using this to identify cases where a nontrivial
automorphism of Q(ζN) fixes s.

‡Last I checked, this was only done for N odd; but similar methods should work in
the general case.
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Cyclotomic relations: the Conway-Jones method

An example of Poonen-Rubinstein

Theorem (Poonen-Rubinstein, 1998)

The number of interior intersection points of the diagonals of a regular
n-gon equals(
n

4

)
+
−5n3 + 45n2 − 70n + 24

24
δ2(n)−3n

2
δ4(n)+

−45n2 + 232n

6
δ6(n)+· · ·

where δm(n) = 1 if n ≡ 0 (mod m) and 0 otherwise. (The missing terms
involve δ12, δ18, δ24, δ30, δ42, δ60, δ84, δ90, δ120, δ210.)

The proof involves identifying all ways that three or more diagonals can
intersect in a point. This requires extending the Conway-Jones
classification to sums of 12 roots of unity, the current record.
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Cyclotomic relations: the Conway-Jones method

Making this an algorithm

The fact that the Conway-Jones method gives an algorithm for finding
torsion closures in tori was formalized by Leroux.

It is enough to deal with one Laurent polynomial f ∈ K [x±1 , . . . , x
±
n ]

at a time.

Write f as a sum of monomials whose coefficients are roots of unity.
View this as a cyclotomic relation.

Classify all minimal cyclotomic relations up to this length. Each one
involves a single free parameter (choice of a rotation).

Enumerate over all ways to combine the monomials we wrote down
into minimal relations. For each of these, solve for the free
parameters (this is essentially linear algebra over Z).

This works in principle, but scales very poorly in the number of monomials.
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Commutative algebra: the Aliev-Beukers-Smyth method
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Commutative algebra: the Aliev-Beukers-Smyth method

Cyclotomic factors of univariate polynomials

For a nonzero univariate polynomial f (x) over Q, define the cyclotomic
part of f , denoted C (f ), as the product (without repetition) of those
cyclotomic polynomials Φn(x) which divide f (x).

There is a very efficient algorithm§ of Bradford-Davenport to compute
C (f ). We give here a slight variant due to Beukers-Smyth. (This is
implemented in Sage as the cyclotomic part method of a polynomial.)

Compute f1(x) := gcd(f , f (x2)f (−x2)).

If deg f1 = deg(f ), put h := f . Otherwise, compute
f2(x) := gcd(f (x), f (−x)), g(x) := f2(x1/2), then recursively compute
h := C (f1)(x)C (g)(x2).

Then C (f ) is equal to the squarefree part of h (that is, h/ gcd(h, h′)).

§For a polynomial f (x) over a number field K , one can extract the cyclotomic part
by taking the field norm from K(x) to Q(x), taking the cyclotomic part of the result,
then computing the gcd with f .
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Commutative algebra: the Aliev-Beukers-Smyth method

Cyclotomic factors of univariate polynomials

Compute f1(x) := gcd(f , f (x2)f (−x2)).

If deg f1 = deg(f ), put h := f . Otherwise, compute
f2(x) := gcd(f (x), f (−x)), g(x) := f2(x1/2), then recursively compute
h := C (f1)(x)C (g)(x2).

Then C (f ) is equal to the squarefree part of h (that is, h/ gcd(h, h′)).

The fact that this algorithm works can be derived from the following.

Lemma (Beukers-Smyth)

(a) Suppose f (x) ∈ C[x ] has this property: for every zero α of f , at least
one of ±α2 is also a zero of f . Then all zeroes of f are roots of unity.

(b) If ζ ∈ C is a root of unity, then it is Galois-conjugate over Q to at
least one of −ζ, ζ2,−ζ2.

(c) Conversely, if ζ ∈ C× is Galois-conjugate over Q to either ζ2 or −ζ2,
then ζ is a root of unity. (This is a special case of (a).)
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Commutative algebra: the Aliev-Beukers-Smyth method

The Beukers-Smyth method

Let f ∈ Q(ζN)[x±, y±] be irreducible and not a binomial. We know that
the torsion closure of Z (f ) is a finite set Y of points.

If N is odd, then each point of Y is a zero of one of

f (x ,−y), f (−x , y), f (−x ,−y),

f τ (x2, y2), f τ (x2,−y2), f τ (−x2, y2), f τ (−x2,−y2)

where f τ means apply the automorphism ζN 7→ ζ2
N to coefficients.

If N is divisible by 4, then each point of Y is a zero of one of

f (x ,−y), f (−x , y), f (−x ,−y),

f τ (x , y), f τ (x ,−y), f τ (−x , y), f τ (−x ,−y)

where f τ means apply the automorphism ζN 7→ −ζN to coefficients.

We thus compute a finite set containing the torsion closure. By univariate
computations (as above), we reduce this to the actual torsion closure.
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f τ (x , y), f τ (x ,−y), f τ (−x , y), f τ (−x ,−y)

where f τ means apply the automorphism ζN 7→ −ζN to coefficients.

We thus compute a finite set containing the torsion closure. By univariate
computations (as above), we reduce this to the actual torsion closure.
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Commutative algebra: the Aliev-Beukers-Smyth method

Higher dimensions

Aliev-Smyth propose a similar algorithm in higher dimensions, using
resultants at each step to eliminate one variable.

It seems more practical to reconceptualize this in terms of commutative
algebra. Starting with an ideal I , we have a finite collection S of ring
endomorphisms with the properties that:

every torsion point of Z (I ) belongs to Z (I + f (I )) for some f ∈ S ;

if f (I ) = I for some f ∈ S , either Z (I ) is its own torsion closure, or I
arises by base extension from a “simpler” ideal (as in the
Bradford-Davenport recursion).

The relevant commutative algebra (using Gröbner bases) is available in
standard software: Singular (via Sage), Magma, Macaulay2, etc.

Unfortunately, my experiments suggest that this is barely practical in three
variables and never in four or more variables.
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The future: modular cyclotomic relations
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The future: modular cyclotomic relations

Example: tetrahedra with rational dihedral angles

For a tetrahedron in R3 with faces labeled 1, . . . , 4, if αjk denotes the
dihedral angle between faces j and k , then

det


−2 2 cosα12 2 cosα13 2 cosα14

2 cosα12 −2 2 cosα23 2 cosα24

2 cosα13 2 cosα23 −2 2 cosα34

2 cosα14 2 cosα24 2 cosα34 −2

 = 0.

When are all six angles rational multiples of π? This question could have
been asked by Dehn in the early 20th century (or by the ancient Greeks),
but was (apparently) first suggested by Conway-Jones.
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The future: modular cyclotomic relations

Example: tetrahedra with rational dihedral angles

By rewriting the equation in terms of e2πiαjk , one gets a polynomial
equation in six roots of unity (plus some positivity constraints which we
ignore). This is the same sort of problem we have been considering, but it
seems out of reach for either¶ of the techniques we have introduced so far.

The determinant expands to a sum of 105 monomials in the e2πiαjk .
It is hopeless to analyze cyclotomic relations of that length.

The commutative algebra approach seems to top out at three
variables, whereas here we have six.

¶Conway-Jones wrote somewhat optimistically: “It seems quite probable that the
general tetrahedron all of whose dihedral angles are rational can be found by our
techniques.”
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The future: modular cyclotomic relations

A new hope

The factors of 2 in the equation

det


−2 2 cosα12 2 cosα13 2 cosα14

2 cosα12 −2 2 cosα23 2 cosα24

2 cosα13 2 cosα23 −2 2 cosα34

2 cosα14 2 cosα24 2 cosα34 −2

 = 0

were put in so that the matrix entries are algebraic integers. What if we
quotient that ring by 2?

The resulting determinant then simplifies to a sum of only 12 monomials
in the e2πiαjk . Poonen has suggested classifying mod-2 cyclotomic
relations using the method of Conway-Jones, to reduce the original
six-variable problem to a collection of subproblems in fewer variables.

A similar idea can also be employed within the Aliev-Beukers-Smyth
method to speed it up as well. The hope is that a combination of these
ideas can be used to classify tetrahedra with rational dihedral angles.
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