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Zeta functions

The Riemann zeta function

For Real(s)> 1, put ζ (s) = ∑
∞
n=1 n−s = ∏p(1−p−s)−1. (E.g., by Euler,

ζ (2) = π2/6.)

Theorem (Riemann, Hadamard, de la Vallée Poussin)

The function ζ (s) extends to a meromorphic function on C, with a simple pole
at s = 1 and no other poles. Moreover, ζ (s) 6= 0 for Real(s)≥ 1.

This implies the prime number theorem:

{# of primes ≤ x} ∼ x
logx

.

Conjecture (Riemann)

Other than s =−2,−4, . . . , the zeroes of ζ occur on the line Real(s) = 1/2.
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Zeta functions

Counting solutions modulo p: an unrelated problem?

Given a system of polynomial equations with integer coefficients, one may
ask how many solutions it has modulo p.

Example

For every prime p > 2, the equation x2− y2 ≡ 1 (mod p) has p−1 solutions.

Example

The number of solutions of x3 + y3 ≡ 1 (mod p) was found by Gauss; for
p≡ 1 (mod 3), it can be expressed in terms of a solution of a2 +3b2 = p.

Kiran S. Kedlaya (MIT, Dept. of Mathematics) A differential approach to zeta functions Zacatecas, May 25, 2007 5 / 32



Zeta functions

Counting solutions modulo p: an unrelated problem?

Given a system of polynomial equations with integer coefficients, one may
ask how many solutions it has modulo p.

Example

For every prime p > 2, the equation x2− y2 ≡ 1 (mod p) has p−1 solutions.

Example

The number of solutions of x3 + y3 ≡ 1 (mod p) was found by Gauss; for
p≡ 1 (mod 3), it can be expressed in terms of a solution of a2 +3b2 = p.

Kiran S. Kedlaya (MIT, Dept. of Mathematics) A differential approach to zeta functions Zacatecas, May 25, 2007 5 / 32



Zeta functions

Counting solutions modulo p: an unrelated problem?

Given a system of polynomial equations with integer coefficients, one may
ask how many solutions it has modulo p.

Example

For every prime p > 2, the equation x2− y2 ≡ 1 (mod p) has p−1 solutions.

Example

The number of solutions of x3 + y3 ≡ 1 (mod p) was found by Gauss; for
p≡ 1 (mod 3), it can be expressed in terms of a solution of a2 +3b2 = p.

Kiran S. Kedlaya (MIT, Dept. of Mathematics) A differential approach to zeta functions Zacatecas, May 25, 2007 5 / 32



Zeta functions

Zeta functions of algebraic varieties

Definition (Weil)
For X an algebraic variety over Fp, its zeta function is the formal power series

ζX(t) = exp

(
∞

∑
n=1

#X(Fpn)
tn

n

)
,

where X(Fpn) is the set of points of X with coordinates in the finite field Fpn .

More generally, we can start with a variety over Fq for q a power of p, then
count points over Fqn for all n. (Note that Fq 6= Z/qZ if q 6= p; that would give
the Igusa zeta function instead.)
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Zeta functions

An example

Example

If p > 2, and X is defined in the plane by the equation x2− y2 = 1, then
#X(Fpn) = pn−1, so

ζX(t) = exp

(
∞

∑
n=1

(pn−1)tn

n

)
=

1− t
1−pt

.
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Zeta functions

Relationship with Riemann’s construction

To better see the analogy with Riemann, rewrite

ζX(p−s) = ∏
x
(1−p−n(x)s)−1,

where x runs over Galois orbits of Fp-rational points of X, and n(x) is the
smallest n such that x is defined over Fpn .

Handy corollary: if X is the disjoint union of Y and Z, then

ζX(t) = ζY(t)ζZ(t).
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Zeta functions

Zeta functions of algebraic varieties (contd.)

The following is analogous to Riemann’s theorem.

Theorem (Dwork, Grothendieck)

The series ζX(t) represents a rational function of t with integer coefficients.

There is also an analogue of the Riemann hypothesis, but in this case it is a
theorem of Deligne.
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Relationship with cryptography

Abelian groups in cryptography

There are several techniques in cryptography based on the use of a “generic”
abelian group G. For such a group, it should be easy to write a computer
program to compute A+B (and −A) from A,B, but it should be hard to take
discrete logarithms: if B = nA for some integer n, it should be hard to recover
n from A,B.

Example (Diffie-Hellman)
Alice and Bob wish to agree on a secret password, but have no way to
communicate securely. They agree (in public) on an abelian group G and an
element P ∈ G. Alice and Bob secretly pick random numbers a,b, and reveal
(in public) aP,bP. The secret password is then abP, but an onlooker only sees
P,aP,bP.
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Relationship with cryptography

Suitability of groups for cryptography

If #G = rs and gcd(r,s) = 1, we can reduce discrete logarithms in G to
discrete logarithms in two groups, of orders r and s. So for best results, the
order of G should be almost prime, i.e., it should have a large prime factor.

A bad example would be the additive group Fp; one can take discrete
logarithms by Euclid’s algorithm. A better example is the multiplicative
group F∗p, but it is not ideal either; there is a better than exhaustive algorithm
for finding discrete logarithms (number field sieve).
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Relationship with cryptography

Algebraic curves and cryptography

Instead, let C be a smooth plane cubic curve (an elliptic curve) over Fq, e.g.,

y2 = x3 + x+1.

(The right side could instead be any cubic polynomial with no repeated roots.)
Then the set of Fq-rational points of C (in the projective plane) forms a group.

More generally, if C is a smooth, projective, geometrically irreducible curve
over Fq, there is a natural group variety containing C, the Jacobian J(C),
whose Fq-rational points form a group. In the previous case, this coincides
with C itself.
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Relationship with cryptography

Zeta functions and group orders

Form of the zeta function for curves
Let C be a smooth, projective, geometrically irreducible curve of genus g over
Fq. (For instance, an elliptic curve has genus 1.) Then

ζC(t) =
P(t)

(1− t)(1−qt)

with P a polynomial of degree 2g, whose roots in C lie on the circle
|z|= q−1/2. The group J(C)(Fq) has order P(1).

Consequently, for a given C, if we can compute ζC, we can then tell whether
#J(C)(Fq) has a large prime factor.
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Relationship with cryptography

Some strategies I won’t discuss

There are several useful strategies for computing ζC that I won’t have time to
focus on in this talk, so I mention them now.

Count #C(Fqn) for n = 1, . . . ,g. This is only good for small examples.

Shanks’s method: fix an element P of J(C) and try to find integers m,n
such that mP = nP (“birthday paradox”).

Schoof’s method: compute ζC modulo a small auxiliary prime `, by
finding the `-torsion points of J(C)(Fq). Repeat enough times, apply
Chinese remainder theorem.

Build a quantum computer. (This would also solve discrete logarithms.)
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A differential approach

The problem at hand

For ease of exposition, I will restrict to the following class of examples.
Assume q = p 6= 2, and let C be the curve

y2 = P(x)

in the projective plane over Fp, where P(x) is a monic polynomial of degree
2g+1 with no repeated roots. This is a hyperelliptic curve of genus g.
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A differential approach

Cohomology and zeta functions

Let X be an algebraic variety over Fp. One often studies ζX by constructing a
cohomology theory associating to X some vector spaces Hi(X) over some field
K, each equipped with a linear transformation F such that

#X(Fpn) = ∑
i
(−1)i Trace(Fn,Hi(X)).

Then
ζX(T) = ∏

i
det(1− tF,Hi(X))(−1)i+1

.

This is similar to the Lefschetz fixed point formula in topology (Weil’s
analogy): the points of X over Fpn are the fixed points of the n-th power of the
Frobenius map which on each coordinate acts as x 7→ xp.
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A differential approach

Cohomology theories

The most famous cohomology theory that can be used to study zeta functions
is étale cohomology (Grothendieck et al.). It is the most well-developed for
theoretical purposes, but it is mostly useless for numerical computations.

We use Monsky-Washnitzer (MW) cohomology, a cohomology theory inspired
by the cohomology of differential forms (de Rham cohomology). This is
harder to develop in theory, but much easier to compute in practice.

Kiran S. Kedlaya (MIT, Dept. of Mathematics) A differential approach to zeta functions Zacatecas, May 25, 2007 19 / 32



A differential approach

Cohomology theories

The most famous cohomology theory that can be used to study zeta functions
is étale cohomology (Grothendieck et al.). It is the most well-developed for
theoretical purposes, but it is mostly useless for numerical computations.

We use Monsky-Washnitzer (MW) cohomology, a cohomology theory inspired
by the cohomology of differential forms (de Rham cohomology). This is
harder to develop in theory, but much easier to compute in practice.

Kiran S. Kedlaya (MIT, Dept. of Mathematics) A differential approach to zeta functions Zacatecas, May 25, 2007 19 / 32



A differential approach

p-adic numbers

The coefficient field of MW cohomology (when q = p) is the field Qp of
p-adic numbers, which are “left-infinite base p expansions”. For instance, in
Q2,

(· · ·111)+1 = 0.

Just like real numbers, you cannot manipulate true arbitrary p-adic numbers
on a computer, because you can only keep finitely many digits.

Fortunately, this is no problem when computing ζX: in practice, you can give
a bound on the size of any given coefficient of ζX . Given this bound, you can
determine the coefficient from a sufficiently good p-adic approximation. (This
is like computing a quantity known to be an integer, by computing it as a real
number with an error of less than 0.5.)
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A differential approach

p-adic cohomology and zeta functions

Note
MW cohomology is only defined for smooth affine varieties.

My original curve C is not affine, because it was defined in the projective
plane. I need to take out a subvariety Z consisting of finitely many points. If X
is what remains, then

ζC = ζXζZ.

Note that there is a unique point at infinity on C, with homogeneous
coordinates [0 : 1 : 0]. I could take Z to consist of that point alone; however, it
will be more convenient to take Z to consist of the point at infinity plus the
points with y-coordinate zero.
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A differential approach

Algebraic differential forms

The basic idea of Monsky-Washnitzer cohomology is to use algebraic
differential forms. But this is a bad idea when working over a field where
p = 0: e.g., in the polynomial ring Fp[x], you can’t always solve the equation

df
dx

= ∑
i

cixi

by setting
f = ∑

i

ci

i+1
xi+1.

Instead, we first pass from the original equation modulo p to an equation with
integer coefficients, and work there.
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A differential approach

Lifting the curve

We started with the curve y2 = P(x) over Fp. Choose a lift P̃ of P to a monic
polynomial of degree 2g+1 over Z. Then y2 = P̃(x) describes a new
hyperelliptic curve C̃ over Qp, on which differential forms behave nicely.

Again, let X̃ be the affine curve obtained from C̃ by taking out the point at
infinity and the points with y-coordinate 0. The ring of regular functions on X̃
is

R =Qp[x,y,z]/(y2− P̃(x),yz−1).
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A differential approach

Algebraic de Rham cohomology

Let Ω be the R-module generated by dx,dy modulo

2ydy− P̃′(x)dx.

Let d : R→Ω be the Qp-linear derivation sending x,y to dx,dy. That is,

df (x,y) =
∂ f
∂x

dx+
∂ f
∂y

dy.

Put H0(X) =Qp. Let H1(X) be the quotient of Ω by the Qp-submodule
generated by df for all f ∈ R.

Theorem

H1(X) is a vector space over Qp with basis

xi dx
y

(i = 0, . . . ,2g−1),
xi dx
y2 (i = 0, . . . ,2g).
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A differential approach

Computing in algebraic de Rham cohomology

Just having a basis for H1(X) is not enough. We must also be able to write any
element of Ω as a linear combination of basis elements plus some df .
Fortunately, this is not difficult.

Example

Start with f (x)dx
ym for some m > 2. Since P̃ has no repeated roots, we can write

f (x) = f1(x)P̃(x)+ f2(x)P̃′(x) for some f1, f2. On one hand, in Ω,

f1(x)P̃(x)dx
ym =

f1(x)dx
ym−2

in Ω; on the other hand, in H1(X), d(2f2(x)/((m−2)ym−2)) = 0, so

f2(x)P̃′(x)dx
ym =

2f2(x)dy
ym−1 ≡

2f ′2(x)dx
(m−2)ym−2 .
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A differential approach

The action of Frobenius

Remember that we need not just vector spaces H0(X),H1(X), but also maps F
on these. They come from lifting the Frobenius map on X.

To compute the action of F on a 1-form, substitute

x 7→ xp

y 7→ yp
(

1+p
P̃(xp)− P̃(x)p

py2p

)1/2

,

where the last expression is expanded as an infinite series. Then rewrite each
term of the series in terms of a basis of H1.

This is an infinite process, but we only want finitely many digits of p-adic
accuracy. One can truncate at a certain point without losing any of this
accuracy.
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This is an infinite process, but we only want finitely many digits of p-adic
accuracy. One can truncate at a certain point without losing any of this
accuracy.
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A differential approach

The conclusion

Theorem (Monsky)

With H0(X),H1(X),F defined as above,

#X(Fpn) =
1

∑
i=0

(−1)i Trace((pF−1)n,Hi(X)).

So we can recover the zeta function of X, and hence of the original curve C.
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Additional remarks
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Additional remarks

Non-prime base fields

The above description required q = p, but cases q 6= p are much more
interesting in applications: the complexity of the calculation depends much
more strongly on p than on q.

We also excluded p = 2, but a variation in that case is possible
(Denef-Vercauteren).

For p small, it is reasonable to perform this calculation even if q has several
hundred digits!
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Additional remarks

Even in the prime case...

In the case q = p, a straightforward implementation is no faster than counting
points directly: both are O(p).

Recent work of David Harvey improves this to O(p1/2), so one can compute
zeta functions in some examples where p∼ 1015.

This may have some applications to computing L-functions associated to
algebraic curves, in order to investigate, e.g., the Birch-Swinnerton-Dyer
conjecture.
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Additional remarks

Other varieties

One can consider many other classes of curves (Castryck-Denef-Vercauteren),
or even higher-dimensional varieties (Abbott-K-Roe, de Jong, Lauder).

Ideas from differential geometry (parallel transport) are also helpful
(Gerkmann, Hubrechts, Lauder). This has attracted some interest among
physicists interested in mirror symmetry.
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Additional remarks

The end

These slides will be available online at

http://math.mit.edu/~kedlaya/papers.
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