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Warmup: polynomials in one variable

Counting roots of polynomials

Let f (x) ∈ Z[x ] be a squarefree polynomial of degree d > 0 whose
coefficients have no common divisor greater than 1. For each prime
number p, define

Nf (p) = #{x ∈ {0, . . . , p − 1} : f (x) ≡ 0 (mod p)}.

This is an integer in the range {0, . . . , d}. But how often does each value
occur?
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Warmup: polynomials in one variable

Example: quadratic polynomials

Take f (x) = ax2 + bx + c. Let ∆ = b2 − 4ac be the discriminant. Then

Nf (p) =


0 if ∆ is not a quadratic residue modulo p

1 if ∆ is congruent to 0 modulo p

2 if ∆ is a nonzero quadratic residue modulo p.

For a “randomly chosen” prime number p, Nf (p) takes the values 0 and 2
each with probability 1

2 (unless ∆ is a square).

In this case, one can even give an explicit formula for Nf (p) using the law
of quadratic reciprocity. For example, in case ∆ = 5, one has (for p > 2)

Nf (p) =


0 if p ≡ 2, 3 (mod 5)

1 if p = 5

2 if p ≡ 1, 4 (mod 5).

This state of affairs is not typical!
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Warmup: polynomials in one variable

The Chebotarëv density theorem

For general f , one cannot to find explicit formulas for Nf (p), but one can
still determine their average distribution as follows.

Let α1, . . . , αd be the roots of f in an algebraic closure of Q. Let G be
the Galois group of the number field generated by these roots, acting on
α1, . . . , αd by permutations. Let ci denote the probability that a random
element of G has exactly i fixed points.

Theorem (Chebotarëv, early 1920s)

For i = 0, . . . , d , we have

lim
N→∞

#{p prime, p ≤ N,Nf (p) = i}
#{p prime, p ≤ N}

= ci .

In other words, Nf (p) = i with probability ci .
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Warmup: polynomials in one variable

Prime powers

For q a prime power, we may also define

Nf (q) = #{x ∈ Fq : f (x) = 0};

this agrees with the previous definition when q is prime.

Theorem (Chebotarëv continued)

For any c1, c2, . . . ∈ {0, . . . , d}, the probability that
Nf (p) = c1,Nf (p2) = c2, . . . equals the probability that a random element
g of G has the property that g has c1 fixed points, g2 has c2 fixed points,
and so on.

Again, the probability is defined by counting the proportion of good primes
in the range p ≤ N and taking the limit as N →∞.
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Systems of polynomial equations
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Systems of polynomial equations

Counting solutions of polynomial equations

For f1, . . . , fm ∈ Z[x1, . . . , xn], we consider the function on prime numbers:

p 7→ NX (p) := #{x = (x1, . . . , xn) ∈ {0, . . . , p − 1}n :

f1(x) ≡ · · · ≡ fm(x) ≡ 0 (mod p)}.

If we rewrite this as

NX (p) = #{x = (x1, . . . , xn) ∈ Fn
p : f1(x) = · · · = fm(x) = 0},

we may use the same formula to define NX (q) when q is a prime power.

In the notation, X denotes the affine algebraic variety (or better, the affine
scheme) defined by f1, . . . , fm. One can also define NX (q) when X is a
more general algebraic variety (or better, a scheme of finite type over Z).
For example, for X = Pn, the projective space of dimension n,

NPn(q) =
qn+1 − 1

q − 1
= 1 + q + · · ·+ qn.
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Systems of polynomial equations

First-order behavior

In most cases, one cannot hope to write NX (p) as an explicit function of
p. Instead, we will look for statistical properties of NX (p). The first-order
behavior is explained by the following result.

Theorem (Lang-Weil, middle 1950s)

Let d be the relative dimension of X over Z (generically this is n −m).
Then there exist a polynomial g ∈ Z[x ] and a constant c > 0 such that for
all prime powers q,

|NX (q)− Ng (q)qd | ≤ cqd−1/2.

From now on, we mostly consider cases in which X is geometrically
irreducible (i.e., X has only one irreducible component when viewed as an
algebraic variety over C). For such X , we can omit the term Ng (q):

|NX (q)− qd | ≤ cqd−1/2.
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Systems of polynomial equations

Generalization to number fields

Let K be a number field, i.e., a finite extension of the field Q. Let oK be
the ring of algebraic integers in K . For instance, one could take K = Q(i),
the field of Gaussian numbers, in which case oK = Z[i ].

For X a scheme of finite type over oK , we may define NX (pe) for each
maximal ideal p of oK and each positive integer e (as the number of
points of X defined over the degree e field extension of oK/p), and ask
similar questions. This will be important later: some phenomena will not
be visible if we only consider K = Q.

Note: the maximal ideals p of absolute degree 1 have density 1 among all
maximal ideals. That is, for averaging purposes, we need only consider
those p for which the residue field is a prime field Fp. We’ll then write
NX (pe) instead of NX (pe).
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Elliptic curves

Elliptic curves

An elliptic curve over a field K is a smooth proper algebraic curve over K
of genus 1 (with a marked K -rational point). If char(K ) 6= 2, these are the
projective algebraic curves defined by equations of the form

y2 = P(x)

where P ∈ K [x ] has degree 3 and has no repeated factors.

There is a natural group structure on the set of K -rational points on an
elliptic curve over K , under which any three collinear points sum to 0.
This makes elliptic curves (particularly over finite fields) useful not only in
number theory, but also in cryptography!
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Elliptic curves

The Hasse bound

Given an elliptic curve E over a number field K , by clearing denominators
we get a scheme X over oK . We can study the function NX (pe), ignoring
the finitely many primes modulo which the defining equation of X does
not reduce to a smooth equation.

Theorem (Hasse, 1930s)

For any positive integer e, |pe + 1− NX (pe)| ≤ 2pe/2.
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Elliptic curves

A key quantity

By Hasse’s theorem, there is a unique way to write

NX (p) = p + 1− p1/2(αp + βp)

with αp, βp ∈ C, Im(αp) ≥ 0, |αp| = |βp| = 1, and αpβp = 1.

Theorem (Artin, 1920s)

For each positive integer e,

NX (pe) = pe + 1− pe/2(αe
p + βep).

We may thus focus our attention on the function p 7→ NX (p), or
equivalently on the function p 7→ αp. Since these are not limited to finitely
many values, in order to talk about their average behavior, we must use
the language of equidistribution with respect to a measure.
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Elliptic curves

Measures and equidistribution

For S a compact topological space, let Cont(S ,R) be the Banach space of
continuous functions S → R. A Radon measure on S is a continuous
linear function µ : Cont(S ,R)→ R which is positive (f ≥ 0⇒ µ(f ) ≥ 0)
and of mass 1 (f = 1⇒ µ(f ) = 1).

For S = [a, b] ⊆ R, we only consider measures which are sums of:

a continuous part, given by f 7→
∫
S fg for some Lebesgue measurable

function g : S → R (the density function); and

a discrete part, given by f 7→ c1f (x1) + · · ·+ cnf (xn) for some
c1, . . . , cn ∈ R and some x1, . . . , xn ∈ S .

A sequence x1, x2, · · · ∈ S is µ-equidistributed if for all f ∈ Cont(S ,R),

lim
n→∞

1

n
(f (x1) + · · ·+ f (xn)) = µ(f ).

This is akin to ergodicity (time average = space average).
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Elliptic curves

Complex multiplication

An elliptic curve E over K has complex multiplication (CM) if there is an
algebraic map E → E (possibly defined over a field larger than K ) which
corresponds to an endomorphism of the group structure other than
multiplication by an integer. For example, the elliptic curve

y2 = x3 − x

admits the automorphism (x , y) 7→ (−x , y
√
−1) of order 4.

Suppose E has CM. From an explicit formula of Hecke (generalizing an
example of Gauss), it follows that if the extra endomorphisms are defined
over K , then the αp are equidistributed for the uniform measure on the
semicircle

{z ∈ C : |z | = 1, Im(z) ≥ 0}.

Otherwise, one must take half of the uniform measure plus half of the
discrete measure at i . That is, NX (p) = p + 1 with probability 1/2.

Kiran S. Kedlaya (UCSD) Equidistribution of Frobenius eigenvalues Maryland, February 12, 2016 17 / 31



Elliptic curves

Complex multiplication

An elliptic curve E over K has complex multiplication (CM) if there is an
algebraic map E → E (possibly defined over a field larger than K ) which
corresponds to an endomorphism of the group structure other than
multiplication by an integer. For example, the elliptic curve

y2 = x3 − x

admits the automorphism (x , y) 7→ (−x , y
√
−1) of order 4.

Suppose E has CM. From an explicit formula of Hecke (generalizing an
example of Gauss), it follows that if the extra endomorphisms are defined
over K , then the αp are equidistributed for the uniform measure on the
semicircle

{z ∈ C : |z | = 1, Im(z) ≥ 0}.

Otherwise, one must take half of the uniform measure plus half of the
discrete measure at i . That is, NX (p) = p + 1 with probability 1/2.

Kiran S. Kedlaya (UCSD) Equidistribution of Frobenius eigenvalues Maryland, February 12, 2016 17 / 31



Elliptic curves

The Sato-Tate conjecture

Conjecture (Sato-Tate, early 1960s)

If E does not have CM, then the Re(αp) are equidistributed with respect
to the continuous measure on [−1, 1] with density function 2

π

√
1− t2.

In other words, if one picks an elliptic curve and computes a histogram for
the values (NX (p)− p − 1)/

√
p over a large range of prime ideals, one

always observes convergence to one of three limiting shapes!

Very good methods for computing NX (p) have been developed (partly for
applications in computer science); one can thus confirm the conjectured
convergence with high numerical accuracy. For visual proof, see

http://math.mit.edu/~drew/g1SatoTateDistributions.html.

We will have more to say about experimental metholodogy later.
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Elliptic curves

Group-theoretic interpretation

Just like for polynomials in one variable, the measures with respect to
which the αp are equidistributed admit simple group-theoretic descriptions.
In all three cases, the pairs {αp, βp} are distributed like the eigenvalues of
a matrix chosen uniformly at random in a certain compact Lie group (with
respect to Haar measure, the unique translation-invariant measure).

If E does not have CM, the group is SU(2).

If E has CM defined over K , the group is SO(2).

If E has CM not defined over K , the group is N(SO(2)), the
normalizer of SO(2) in SU(2). This group has two connected
components, on one of which the eigenvalues are always i ,−i .
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Elliptic curves

Progress on Sato-Tate

Theorem (Clozel, Harris, Taylor, et al., late 2000s; very hard!)

The Sato-Tate conjecture holds for K = Q (and more generally for K a
totally real number field).

It was shown by Serre (imitating the proof of the prime number theorem)
that Sato-Tate would follow from analytic continuation of certain
L-functions associated to E . Some of these were treated by the work of
Wiles et al. establishing modularity of elliptic curves (and Fermat’s last
theorem).

The above theorem relies on rather sophisticated improvements of the
method of Wiles, plus related developments in the Langlands program
linking Galois representations and automorphic forms.
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Hyperelliptic curves of genus 2
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Hyperelliptic curves of genus 2

Hyperelliptic curves

A hyperelliptic curve over a field K (again assuming char(K ) 6= 2) is a
smooth projective algebraic curve C defined by an equation of the form

y2 = P(x)

where P ∈ K [x ] has no repeated factors. For d = deg(P), the genus of
such a curve is bd−12 c; for K = C, this is the number of handles of the
Riemann surface corresponding to this curve.

From now on, we assume C is a hyperelliptic curve of genus 2 over a
number field K (and again let X be a model over oK obtained by clearing
denominators). There is no group structure on C , but there is an
associated object that does have a group structure (the Jacobian variety).
This structure is also relevant for cryptography! As a result, information
about NX (p) has some practical value.
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Hyperelliptic curves of genus 2

Extension fields

Unlike for elliptic curves, for hyperelliptic curves it is not the case that
NX (p) determines NX (pe) for all e. However, in genus 2, there do exist
αp,1, . . . , αp,4 ∈ C with |αp,i | = 1 for which for each positive integer e,

NX (pe) = pe + 1− pe/2(αe
p,1 + · · ·+ αe

p,4).

We can also number things so that αp,1αp,3 = αp,2αp,4 = 1. Another
interpretation: NX (p) and NX (p2) together determine NX (pe) for all e.

Upshot: in order to formulate an analogue of the Sato-Tate conjecture for
hyperelliptic curves of genus 2, we will need to consider measures on
two-dimensional spaces.
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Hyperelliptic curves of genus 2

The generic Sato-Tate conjecture in genus 2

Conjecture (Katz-Sarnak, 2000s)

Suppose that C is generic (i.e., the Jacobian variety has no extra
endomorphisms). Then as we vary over prime ideals, the multisets
{αp,1, αp,2, αp,3, αp,4} are equidistributed for the measure corresponding
to the characteristic polynomial of a random (for Haar measure) matrix in
the group USp(4) of 4× 4 unitary symplectic matrices.

For example, NX (p) should behave like p + 1 minus
√
p times the trace of

a random matrix in USp(4). This is confirmed by experimental evidence:

http://math.mit.edu/~drew/g2_D1_a1f.gif

Unfortunately, there is no C for which the methods used in genus 1 seem
to be able to establish the Katz-Sarnak conjecture! (But most exceptional
cases described in the next conjecture are tractable, by work of Johansson.)
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Hyperelliptic curves of genus 2

The Sato-Tato conjecture in genus 2

Conjecture (Fité, K, Rotger, Sutherland, 2011)

(a) There exists a closed subgroup G of USp(4) (called the Sato-Tate
group of G ) for which the multisets {αp,1, αp,2, αp,3, αp,4} are
equidistributed for the measure corresponding to the characteristic
polynomial of a random (for Haar measure) matrix in G .

(b) The group G is conjugate to one of 52 possible groups, all of which
can occur.

(c) If K = Q, then exactly 34 groups can occur.

The group G can have as many as 48 connected components, e.g., for the
curve y2 = x6 − 5x4 + 10x3 − 5x2 + 2x − 1.

A more precise formulation of the conjecture includes a candidate for G for
which (b) and (c) are provably true; its construction is related to that of
the Mumford-Tate group. (This depends on joint work with Banaszak.)
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Hyperelliptic curves of genus 2

Testing methodology

As noted earlier, one can prove the previous conjecture in some special
cases, but not in any generic case (when G = USp(4)). We are thus left
to ask whether one can test the conjecture numerically. This is really two
questions.

1 For a given C , how can one compute the αp,i for many p (say, all
p ≤ 230?)

2 Given such data, how can one evaluate the proposed equidistribution
property?
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Hyperelliptic curves of genus 2

Testing methodology: computing the αp,i

Some available techniques for computing the αp,i include the following.
(Costing estimates are from K-Sutherland, 2008.)

Compute NX (p),NX (p2) by actually counting solutions. This is best
for p small (say, less than 216).

Identify the group structure of the points of the Jacobian variety (as
in genus 1). This works well in the range we consider (roughly
216 < p < 240).

Use a trace formula in p-adic cohomology to compute a matrix whose
characteristic polynomial has the αp,i as roots. This is optimal in a
somewhat larger range than we consider (roughly 240 < p < 264).

Use Pila’s generalization of Schoof’s algorithm: compute
NX (p),NX (p2) modulo ` for many small primes `. This is best for
very large p, e.g., in cryptography applications where one takes a
single p of size about 2128.
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Hyperelliptic curves of genus 2

Testing methodology: evaluating the numerical fit

The easiest way to numerically test equidistribution is to consider one
function f of the αp,i at a time. One can do this both visually, by making
a histogram plot, and by computing moment statistics, i.e., the expected
values E(f n) for n = 1, 2, . . . . The latter are forced to be integers, as they
compute characters of certain virtual representations of G .

http://math.mit.edu/~drew/g2SatoTateDistributions.html.

One can also make histogram plots on a suitable two-dimensional space,
e.g., the first and second elementary symmetric functions of the αp,i .

Kiran S. Kedlaya (UCSD) Equidistribution of Frobenius eigenvalues Maryland, February 12, 2016 28 / 31

http://math.mit.edu/~drew/g2SatoTateDistributions.html


What else?

Contents

1 Warmup: polynomials in one variable

2 Systems of polynomial equations

3 Elliptic curves

4 Hyperelliptic curves of genus 2

5 What else?

Kiran S. Kedlaya (UCSD) Equidistribution of Frobenius eigenvalues Maryland, February 12, 2016 29 / 31



What else?

Curves of higher genus

The numerical methods for computing NX (pe) extend to hyperelliptic
curves of higher genus (with some loss of efficiency). Similar methods can
also be developed for curves which are not hyperelliptic, e.g., those defined
by nonsingular quartic polynomials in the plane (these being of genus 3).

In genus 4, the Sato-Tate group becomes a somewhat subtler invariant of
the curve, as it is not determined by the endomorphisms of the Jacobian
(as discovered by Mumford). Also, there is a possible distinction between
Sato-Tate groups that can arise from curves and from abelian varieties.
For instance, it is not yet known whether Mumford’s exotic examples,
which are constructed as abelian varieties, can ever occur as Jacobians of
curves over Q. This can be tested numerically!
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What else?

More general algebraic varieties

A fairly general version of the Sato-Tate conjecture has been formulated
by Serre. It would be interesting to collect numerical data in some simple
higher-dimensional cases, e.g., K3 surfaces.

Some numerical methodology is suitable for this, especially techniques
based on p-adic cohomology (e.g., see ongoing joint work with Edgar
Costa and David Harvey).

For additional discussion, attend Sutherland’s lectures at the 2016 Arizona
Winter School!
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