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Notations

k: a field of characteristip > 0

K: a complete discretely valued field (ckign = 0) with residue fielck
g: a power ofp

Ok a continuous endomorphism Kflifting the g-power Frobenius ok

Warning: all isocrystals will be defined using the coeffitibald K and the
Frobenius liftok, withoutincluding them in the notation.
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Isocrystals

Let X C Y be an open dense immersionkebarieties. Consider categories:

(F-)Isoc'(X,Y): (F-)isocrystals orX overconvergent withity
(F-)Isoo(X): =(F-)Isoc’ (X, X) (convergent F-isocrystals
(F-)Isoc' (X): =(F-)Isoc' (X, Y) with Y proper pverconvergent F-isocrystals

Theorem (I, 5.2.1; 1, 4.2.1)
Suppose X is smooth and@X is open dense. The restriction functors

(F-)Isoc'(X,Y) — (F-)Isoc (U, Y)
F-1soc(X,Y) — F-lsoqX)

are fully faithful.

The latter is conjectured to hold witholt(Tsuzuki).
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Logarithmic isocrystals

By asmooth pairwe mean a paifX,Z) with X smooth ovek andZ a strict
normal crossings divisor oM. Consider categories:

(F-)Isoc((X,Z)): convergent logH-)isocrystals or{X,Z) (Shiho)
(F-)Isod"((X,Z)): convergent logk-)isocrystals or(X, Z) with nilpotent
residues alond (see below)

Warning: it isnot knowrhow to construct Isod (X, Z)). However, we will

use local models of this category, without assuming thatdfeee independent
of the choice of lifts.
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Logarithmic isocrystals (contd.)

Let (X,Z) be a smooth pair, ldd be a component &, and putz’ = Z\ D.
We may restric’ € Isoq(X,Z)) to (&p,Np) whereép € Isoq(D,Z' N D))
andNp € Hom(ép, ép) is horizontal. CalNp theresidueof & alongD. By
definition, & € Isoc™((X,Z2)) iff Np is nilpotent for allD. This is automatic if
& carries a Frobenius, i.e.,

F-1s0¢((X,Z)) = F-1sod" ((X,Z2)).
Theorem (I, 6.4.5)
The restriction functor

(F-)Isod™((X,Z)) — (F-)Isoc' (X \ Z,X)

is fully faithful. (This fails without requiring nilpoteresidues.)
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Alterations

An alteration f: Y — Y is a proper, dominant, generically finite morphism.
k is perfect, we also assunfiés generically étale.
Theorem (de Jong)

Let XC Y be an open dense immersion of k-varieties. Then there exist
alteration f: Y’ — Y such thatY’,f~1(Y\ X)) is a smooth pair.

It is not knownwhetherf can be taken birational over the smooth locu¥ of

de Jong’s theorem stands in for resolution of singulariies k. However,
knowing resolution would not improve our main theorerteptpossibly by
eliminating blowups outside the regular locus.
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The semistable reduction theorem

Theorem (Semistable reduction; conjectured by Shiho)

Let XC Y be an open immersion of k-varieties. Far¥’ — Y an alteration,
put X =f~1(X) and Z = Y'\ X'. Then for anys’ € F-Isoc'(X,Y), we can
choose f so thatY’,Z’) is a smooth pair and*4 is the restriction (uniquely)
of an element of Asoc" ((Y',Z/)).

Semistable reduction is used by Caro and Tsuzuki to provehol@omicity
of overconvergenE-isocrystals, and by Shiho to construct generic higher
direct images in relative rigid conomology.

An analogue in characteristic 0: a higher-dimensionaligarsf Turrittin’s
structure theorem for formal connections (work in progress
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Local monodromy for isocrystals

Let (X,Z) be a smooth pair, pid = X\ Z, and letD be a component d.
Let L be a complete discretely valued field of characteristic G wasidue
field k(D), containingK with the same value group, and admitting a
Frobenius lifto extendingok. Note that

dim_Q x =dim(D) = dim(X) — 1.

TheRobba ringZ, consists of formal sumg;., it with ¢ € L which are
convergent on some annulus< |t < 1.

For& e IsocT(U,X), we obtain docal monodromy modulavhich is a finite
free Z -module&p equipped with an integrable connection

0:éb — &b @z Qa k-
If & e F-IsocT(U,X), we also get a horizontal isomorphidfn 0*&p = ép.
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Unipotence and logarithmic extensions

Theorem (I, 5.2.1)

Let UC X CY be open dense immersions with X smooth. Then the essen
image ofisoc’(X,Y) — Isoc'(U, Y) consists of thosé for which &b is
constant as @l-module for each codimensidncomponent D of X U.

Theorem (I, 6.4.5)

Let(X,Z) be a smooth pair, and put & X\ Z. Then the essential image of
Isod™((X,Z)) — Isoc' (U, X) consists of thosé for which & is unipotent as
a [J-module for each component D of Z.

v

These can be interpreted as analogues of Zariski-Nagaits. giroes this
extend to the local complete intersection case? See exahpkuizuki.)
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Some sample corollaries

Theorem (I, 5.3.1)

Let UC X CY be open dense immersions with X smooth. For
& € lsoc'(X,Y), any subobject of in Isoc' (U, Y) lifts to a subobject of’ in
Isoc’ (X, Y).

This follows because the property th& is constant passes to all subobjects
(Beware: the analogous statement for the restridfidaoc’ (X) — F-lsod(X)
is false! Consider, e.g., a unit-root subcrystal.)

Theorem (I, 5.3.7)
Let UC X CY be open dense immersions with X smooth. Then

150¢(X) X|50¢t(u x) 150 (U, Y) = Isoc’(X, ).
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The good news, and the bad news

The good news: the following is an easy consequence of “Greanjecture”,
a/k/a thep-adic local monodromy theorem of André-Mebkhout-K.

Theorem (Local monodromy theorem)

Let(X,Z) be a smooth pair, put &= X\ Z, and let D be a component of Z. |
&p carries a Frobenius structure, then there exists a finiteesion#’ of %,
(induced by the unramified extensionggf? corresponding to a finite
separable extension ofR)((t))) such thatép ®4, Z#’ is unipotent (as a
O-module).

The bad news: this plus Zariski-Nagata purity is hot enoagtetduce
semistable reduction, because an arbitrary finite extardfig(X) does not
correspond to a finite cover &fwhich issmooth or even toroidal.
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Valuation-theoretic localization|

Krull valuations

Let X be an irreduciblé-variety. AKrull valuation onk(X) overk is a
functionv: k(X) — ' U {e} for some totally ordered group, such that:
o V(X) = iff x=0;
9 V(xy) = V(X) +V(y);
o V(x-+y) > min{v(x),v(y)}.
Define

My = v(k(X)™) (value group)
oy = {X € k(X) : v(x) > 0} (valuation ring)
my = {x € k(X) : v(x) > 0} (maximal ideal)
Ky = oy/my (residue field)
Thecenterof vonXis {x € X: oxx C oy}. If nonempty (e.g., iX is proper), it
is closed and irreducible of dimensightrdeg ky/k), andv is centered on X
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Divisorial valuations and semistable reduction

We sayv is divisorial if v measures order of vanishing along some divisor o
some variety birational t&. In particular,l, = Z.

Let X C Y be an open immersion of irreducilevarieties. For
& € 1soc’(X,Y), we get a local monodromy modui for each divisorial
valuationv onk(X) centered orY.

Theorem (approximately 11, 3.4.4)

& admits semistable reduction if and only if there exists adficover X — X
with X’ irreducible, such that for each divisorial valuation v o centered
onY,&, becomes unipotent after tensoring with the extensia#,of
corresponding to some extension of w (XK. (Note: L is a CDVF with
residue fieldky.)

This is conveniently reformulated using Zariski-Riemapaces.
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Zariski-Riemann spaces

Let Six)/k be the set of equivalence classes of Krull valuationk(@f) over
k. (Herev ~ V iff o, = oy.) This carries th&ariski-Hausdorff topology
specified by the basis of opens given by

{ve Sqxy ks v(f1), -, V(fm) > 05v(G1), .- -, V(Gn) > 0}

for anyfy,...,fm,01,...,0n € K(X).

Theorem (Zariski)
The topological spacef « is compact. J
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Local semistable reduction

Let X C Y be an open immersion of irreducibitevarieties. Fof : Y/ — Y an
alteration, putX’ = f~1(X) andz’ = Y'\ X".

For& € F-Isoc'(X,Y) andv € Sx)/k centered orY, & admitslocal
semistable reduction atif/there exists an alteratioh: Y — Y with Y’
irreducible and an oped C Y’ such thatU,U NZ’) is a smooth pair, some
extension of/ to k(Y’) is centered otJ, andf*&’ lifts from
F-lsoc'(X'NU,U) to F-Isoc" ((U,UNZ)).

Using Zariski's compactness theorem, we obtain the folhgwi

Theorem (ll, 3.3.4, 3.4.5; 1V, 2.4.2)

Suppose that” admits local semistable reduction at alevS,x) x centered
on Y. Therg admits semistable reduction.
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Abhyankar’s inequality

Theheight(real rank of v is the minimumm such that",, embeds into the
lexicographic producR™.

Therational rankof vis dimg(I'y ®z Q). Note that heighv) < ratrankv).

Thecorankof vis
corankv) = dim(X) — ratrankv) — trdeg ky/K).

Theorem (Abhyankar)

For any ve S¢x)/k» corankv) > 0. Moreover, ifcorankv) = 0, then
Iy = zratranky) and, s finitely generated over k.

A v with coranKv) = 0 is called arAbhyankar valuationThese are dense in
S«x)/k: since already divisorial valuations are dense.
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Reductions

Theorem (ll, 3.2.6)

To prove (local) semistable reduction for a given isocriystauffices to do so
after base change from k t8'&

V.

Theorem (ll, 4.2.4, 4.3.4)

To prove local semistable reduction over an algebraicalbsed field k, it
suffices to do so for all valuations v witteight{v) = 1 and ky = k.
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Local uniformization in corank 0

Assume from now on that= k39, Let X C Y be an open dense immersion o
irreduciblek-varieties. Letv be a valuation oi(X) overk centered orY with
corankv) = 0 andk, = k.

Theorem (Kuhlmann, Knaf)

There is a blowup Yof Y and local coordinates t...,t, on Y at the center o
v, such that

are linearly independent ovép and generatd , as aZ-module.

ForB = (B1,...,Bn) € R", letvg denote thefy, ..., Bn)-Gauss valuation in
terms ofty, ..., ty. Then the completiok(X), is isomorphic to the
Vg-completion of[ty", ..., tF].
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Differential ramification breaks

Take& € Isoc'(X,Y) of rankd. Fix 8 = (B1,...,Bn) € R". We may realizes
as all-module on a subspace of tfeg, . . . ,t,)-affine space including (for
somee € (0,1))

{(te, ... t0) s (Jta],..., [ta]) = (pP,..., pP") for somep € (g,1)}.

Then there exigh (&, B) > --- > bq(&, B) > 0 such that the intrinsic
subsidiary generic radii of convergence(||, ..., |t|) = (0P,...,pP) are
equal topP(¢:B) .. pbi(¢'B) These are thdifferential ramification breaks
of & alongvg (at least if3 € Q").

In the one-dimensional case, these are ordinary ramifictieaks of the
local monodromy representation (Crew, Matsuda, Tsuzdj.more
discussion, see: K, Swan conductors ffeadic differential modules, I, 1I.
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Variation of differential Swan conductors

ForB = (B1,...,Bn) € Q", the differential ramification breaks satisfy
dlbi(&,B) € ZB1+ -+ Z By (i=1,...,d).

Moreover,by (&', B) = 0 if and only if &, becomes unipotent after pulling
back along a cover tamely ramified alonig- -t, = 0 (lll, 5.2.5). Define

B|((9([),B) = bl(éb7B) 4 +b|(éb7B)

Theorem (lll, 2.4.2, 4.4.7 far= 1, K, Xiao in general)

The functions B; (&, B) and By(&’, ) are convex and piecewise integral
affine (integral polyhedral) of8 € [0, +)".
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Two approaches to local semistable reduction

Original approach (11, 6.3.1): use an analogue ofpkedic local monodromy
theorem (K, Thep-adic local monodromy theorem for fake annuli) to reach
situation (after suitable alteration) whdyg( &', a) = 0. Since

d'b;(&,B8) = d'B1(&, B) is integral polyhedral, this forcds (&£, 8) to vanish
identically in a neighborhood af.

Alternate approach (no reference yet): imitate Mebkhquttsof of the
monodromy theorem, replacing Christol-Mebkhout decoritjpostheory
with its higher-dimensional analogue (K-Xiao).
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The case of corank 0

Induction on corank

Again, assume thatis a valuation ork(X) centered ow with k, = k, but

now suppose coraik) = m> 0. Assume local semistable reduction for all
valuations of corank< m.

Unfortunately,v does not admit a sufficiently convenient descriptions imloc
coordinates to permit an analogue of our argument in thenkddacase. This
is in part becausE, need not be finitely generated ovér

Instead, we choose a fibratiar: Y — Y% in curves such that(Y°) contains a
Q-basis ofly ®7 Q. Then the restriction® of v to k(Y°) satisfies

corank\°) = corankv) — 1.
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A path in valuation space

Letz < Y be the center of, and putzy = 11(2). Letx € k(X) restrict on
1 1(2) to a local parameter fax

We then identifyv with a multiplicative seminorm oR(Y?),0[x] bounded by
the 1-Gauss norm, corresponding to a point of type 1 (claBsic 4
(spherical) in the Berkovich closed unit disc okéy°),..

Draw the path#? from the Gauss point to the point correpondingtd@he
strategy now is to reduce local semistable reduction fvxdmsome point of
2\ {v}; any such point corresponds to a valuation with conamk 1, for
which we are okay by the induction hypothesis.

(Aside: can we go back and formulate the whole story with Beidh spaces
instead of Zariski-Riemann spaces?)
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Numerical invariants

Identify & with an interval[0, so] by identifyingw with s= — log radiugw).
(Theradiusof w € & is the infimum of the radii of discs containing)

We define certain numerical invariarfig&’,s) > --- > fy(&£,s) > 0 for
w e &, akin to the differential ramification breaks (IV, 3.1.323.). Put
Fi(&,s) =f1(&,9)+---+f(&£,9).

Theorem (IV, 3.1.4, 5.2.3)

The dF;(&,s) are convex and piecewise affine with nonpositive integral
slopes. In particular, each ({4, s) is affine in a neighborhood of v.

The hardest part is the affinity nearEverything makes heavy use of
guantitative Christol-Mebkhout theory (i§;adic differential equations).

Warning: theb;(£,s) in (IV, 4.5.1) are oufi(&£,s) +s.
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Endgame

Put.Z = & ®End(&) @ End(End(&)), whereEnd(&) = &Y @ &. By blowing
up, we may reduce to the case whereltf{e#, s) are affine on all of”2. Then
we get a “uniform Christol-Mebkhout decomposition” .&f for all of &2, and
the slope zero part becomes unipotent on a tame cover.

Using the induction hypothesis, we can pull back along aratibn to reach
the case where eithéi (&, s) = 0, or some powe¥ of & @ End(&) locally
(uniformly) admits a nonconstant rank 1 submodule whm#etensor power
is constant. Its invariant is;(¢,s) for somei, and has slopes <.

One can find a Dwork isocryste#” such that the corresponding submodule
£V ®% has invariant with terminal slope 0, hence= 0 (IV, 5.3.1). Kill this
component using the Artin-Schreier cover that trivialiZz&€gplus tame).
Repeat finitely many times; thdn (£, s) = 0 identically, and we win by the
induction hypothesis.
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