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Introduction: p-adic local monodromy

The Robba ring

Let K be a complete discretely valued field of mixed characteristic (0,p), with
ring of integers oK , maximal ideal mK , and residue field k. Let AK(ρ,1) be the
annulus ρ < |t|< 1. Define the Robba ring

R =
⋃

ρ∈(0,1)

Γ(AK(ρ,1),O).

Write elements of R as formal Laurent series ∑citi. The subring

R int = {∑citi ∈R : ci ∈ oK (i ∈ Z)}

is a henselian (noncomplete) discrete valuation ring with residue field k((t)).
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Introduction: p-adic local monodromy

The p-adic local monodromy theorem

Let q be a power of p. Pick a map σ : R int →R int of the form

∑citi 7→∑σK(ci)ui,

where σK lifts the absolute q-power Frobenius, and u≡ tq (mod mK). Let M
be an (F,∇)-module, i.e., a finite free R-module equipped with:

a connection ∇ : M →M⊗Ω1
R/K = M⊗dt;

an isomorphism F : σ∗M →M of modules with connection.

Theorem (André, K, Mebkhout)

There exists a finite étale extension S of R int such that as a module with
connection, M⊗Rint S is a successive extension of trivial modules (i.e., M is
quasi-unipotent).
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Introduction: p-adic local monodromy

Monodromy representations

Write GF = Gal(Fsep/F).

Corollary

The category of R-modules with quasi-unipotent connection is equivalent to
the category of semilinear representations of

G = Gk((t))×K

on finite dimensional Kunr-vector spaces, which are potentially trivial on the
first factor and unipotent on the second factor.

In particular, the restriction to the inertia subgroup of Gk((t)) descends to a
linear representation with finite image, so has a well-defined Swan conductor.
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Introduction: p-adic local monodromy

p-adic irregularity

For M an (F,∇)-module, one can define a p-adic analogue of the irregularity
of a meromorphic connection on a complex analytic space.

Theorem (André, Crew, Matsuda, Tsuzuki)
The p-adic irregularity of M agrees with the Swan conductor of the
monodromy representation.
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Introduction: p-adic local monodromy

Goals of the present work

Goals in italics have not yet been realized.

Define a sensible analogue of irregularity for p-adic differential modules
on higher dimensional spaces (overconvergent F-isocrystals).

Use this to define a sensible analogue of Swan conductor for Galois
representations of a local field of equal or mixed characteristic with
imperfect residue field.

Relate this to the Abbes-Saito logarithmic conductor.

Study the variation of p-adic irregularity for a fixed overconvergent
F-isocrystal or a lisse `-adic sheaf on a fixed surface, but varying the
choice of a boundary divisor.

Apply this to the problem of semistable reduction for overconvergent
F-isocrystals on surfaces and higher-dimensional varieties.
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p-adic irregularity and the differential Swan conductor
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p-adic irregularity and the differential Swan conductor

Setup

Let L/K be an extension of complete discretely valued fields of mixed
characteristics (0,p), such that L and K have the same value group, and the
module of continuous differentials Ω1

L/K admits a finite basis dx1, . . . ,dxn.
(E.g., take L to be the completion of K(x1, . . . ,xn) for the (1, . . . ,1)-Gauss
norm.)

On the annulus AL(ε,1), we can construct a sheaf Ω1
AL(ε,1)/K of continuous

differentials relative to K.

Let E be a coherent locally free O-module on AL(ε,1), equipped with an
integrable K-linear (but not L-linear) connection

∇ : E → E ⊗Ω
1
AL(ε,1)/K .

(The integrability is a nonempty condition as soon as n > 0.)
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p-adic irregularity and the differential Swan conductor

Generic radii of convergence (after Christol-Dwork)

For ρ ∈ (ε,1), let Fρ be the completion of L(t) for the ρ-Gauss norm. View
Fρ as a differential field of order n+1, for the derivations

∂1, . . . ,∂n+1 =
∂

∂x1
, . . . ,

∂

∂xn
,

∂

∂ t
.

Put Eρ = E ⊗Fρ , viewed as a differential module over Fρ . Equip Eρ with any
norm compatible with the norm on Fρ ; these are all equivalent. Thus,
although the operator norm

|∂i|Eρ
= sup

v∈Eρ ,|v|=1
|∂i(v)|

depends on the choice of the norm, the spectral norm is well-defined:

|∂i|Eρ ,sp = lim
n→∞

|∂ n
i |

1/n
Eρ

.
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p-adic irregularity and the differential Swan conductor

Generic radii of convergence (continued)

Define the scale of ∂i on Eρ as

si =
|∂i|Eρ ,sp

|∂i|Fρ ,sp
;

the denominator is |p|1/(p−1) for i = 1, . . . ,n and ρ−1|p|1/(p−1) for i = n+1.

Define the (toric) generic radius of convergence of Eρ as

T(E ,ρ) = min{s−1
1 , . . . ,s−1

n+1}.

In the case n = 0, ρ ·T(E ,ρ) is the radius of the largest open disc around a
“generic” point of AL(ρ,1) at distance ρ from the origin, on which E admits a
basis of horizontal sections.

Note: a beautiful coordinate-free definition has been given by Baldassarri.
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p-adic irregularity and the differential Swan conductor

Connections solvable at 1

Theorem (after Christol-Dwork, Christol-Mebkhout)

The function f : (0,− logε)→ R given by f (r) = logT(E ,e−r) is concave and
piecewise linear, with slopes in (rankE )!−1Z.

We say E is solvable at 1 if

lim
ρ→1−

T(E ,ρ) = 1.

This is automatic if E admits a Frobenius structure.

For E solvable at 1, there exists some b ∈ R≥0 such that T(E ,ρ) = ρb for
ρ ∈ (ε,1) sufficiently close to 1. We call b the differential highest
ramification break of E .
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p-adic irregularity and the differential Swan conductor

Example: Dwork isocrystals

Assume π ∈ K with πp−1 =−p. Let L be the completion of K(x) for the
1-Gauss norm. Put E = Ov with

∇(v) = πv⊗d(xat−b)

with a ∈ Z, b ∈ Z>0, and a,b not both divisible by p. Then the differential
highest break of E is equal to b.

This construction is analogous to Artin-Schreier sheaves in the étale setting.
In fact, this is better than just an analogy!
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p-adic irregularity and the differential Swan conductor

The Hasse-Arf polygon

Assume that E is solvable at 1.

Theorem (after Christol-Mebkhout)

Over AL(δ ,1) for some δ , there exists a direct sum decomposition E =⊕bEb
such that for any ρ ∈ (δ ,1), every constituent of Eb,ρ (as a differential module
over Fρ ) has maximum scale ρ−b.

(In case n = 0, every nonzero local horizontal section of Eb around a generic
point at distance ρ from the origin has radius of convergence ρb+1.)

The Hasse-Arf polygon of E is defined to have slope b with multiplicity
rank(Eb). The differential Swan conductor of E is

Swan(E ) = ∑
b

b rank(Eb).
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p-adic irregularity and the differential Swan conductor

The Hasse-Arf property

Assume that E is solvable at 1.

Theorem
Swan(E ) is a nonnegative integer.

The proof uses Newton polygons for twisted polynomials over differential
fields. It does not provide a cohomological interpretation; that is, I do not
know how to exhibit Swan(E ) as the dimension of a naturally arising vector
space (except in the case n = 0).
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Galois representations

Setup

Let E be a complete discretely valued field of characteristic p > 0, with
residue field k. Assume for simplicity that [k : kp] = pn < ∞, although the
results can be extended to the general case.

By a representation of GE, we will mean a continuous homomorphism
ρ : GE → GL(V), for V a finite dimensional vector space over some finite
extension F of Qp.

We will be interested in representations of GE with finite local monodromy,
i.e., such that the restriction of ρ to the inertia group IE has finite image.
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Galois representations

From representations to differential modules

Apply Cohen’s structure theorem to write E ∼= k((t)), so as to identify E with
the residue field of R int.

An (F,∇)-module over R is unit-root (étale) if it arises by extension of
scalars from an (F,∇)-module over R int.

Theorem (after Tsuzuki)
There is an equivalence of categories between representations of GE with
finite local monodromy, and (F,∇)-modules over R with unit-root Frobenius
structure.

We can use this to define differential Swan conductors for representations of
GE with finite local monodromy. (The roles of L,K before are now played by
K and a subfield K0 whose residue field is the maximal perfect subfield of k.)

For instance, Dwork isocrystals arise from Artin-Schreier characters.
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Galois representations

Transfer from `-adic to p-adic

Let W be a finite dimensional vector space over some finite extension F of Q`,
for ` 6= p a prime, and let ρ : GE → GL(W) be a continuous homomorphism.
Then ρ is necessarily quasi-unipotent, so the semisimplification (ρ|I)ss

factors through the quotient H by a cofinite open subgroup.

The representation (ρ|I)ss of the finite group H can be defined over the field
Qab, which can be embedded into a finite extension of Qp. We can thus
construct a p-adic representation of H, and hence obtain a differential Swan
conductor.

Similarly, we can define differential Swan conductors for representations with
finite local monodromy into vector spaces over any field of characteristic 0.
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Galois representations

Comparison with Abbes-Saito?

Abbes-Saito defined a logarithmic filtration on GE, which agrees with the
upper numbering filtration if n = 0. This gives another notion of conductor for
representations with finite local monodromy.

Problem (after Matsuda)
Does this agree with the differential Swan conductor? (Progress by Matsuda,
L. Xiao.)

An affirmative answer would imply that the Abbes-Saito conductor is an
integer, which is otherwise not known in general.

The Abbes-Saito construction also works if E has mixed characteristic. I
don’t know whether it has a differential interpretation in that case, or whether
one can prove integrality of conductors.
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Overconvergent F-isocrystals
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Overconvergent F-isocrystals

Setup

Let X be a smooth variety over k. An overconvergent F-isocrystal on X is the
p-adic analogue of a lisse `-adic sheaf on X.

Embed X into a proper variety X. Locally, lift X to a formal scheme P over oK

smooth near X. An overconvergent F-isocrystal consists of a module with
integrable connection on a strict neighborhood of the tube ]X[, plus an action
of a lift of Frobenius.
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Overconvergent F-isocrystals

Conductors along divisors

Let E be an overconvergent F-isocrystal on a smooth irreducible variety X.
Given any irreducible divisor Z ⊂ X, we can “restrict E to the generic point of
Z”, obtaining an (F,∇)-module over RL with L a complete discretely valued
field with residue field k(Z).

This leads to a differential Swan conductor Swan(E ,Z) along Z. It is more
canonical to view the construction as taking as input an overconvergent
F-isocrystal plus a divisorial valuation on k(X). (It will then extend
continuously to certain non-divisorial valuations.)

Kiran S. Kedlaya (MIT, Dept. of Mathematics) The differential Swan conductor Tokyo, June 13, 2007 24 / 31



Overconvergent F-isocrystals

Normalization

In its natural normalization, Swan(E ,Z) is always a nonnegative integer. To
state continuity results, it is better to normalize in terms of a fixed function
t ∈ k(X).

If Z corresponds to the surjective divisorial valuation v : k(X)→ Z, put

Swant(E ,Z) =
Swan(E ,Z)

|v(t)|
.
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Overconvergent F-isocrystals

Convexity

Let X be the complement in a smooth variety X of a strict normal crossings
divisor D = D1∪·· ·∪Dm. Let t1, . . . , tm be local parameters for D1, . . . ,Dm at
some point x ∈ D where they meet. For r = (r1, . . . ,rm−1) ∈Qm−1

≥0 , define the
valuation

vr : t1 ∼ tr1
m , . . . , tm−1 ∼ trm−1

m .

Theorem
Let E be an overconvergent F-isocrystal on X. Then Swantm(E ,r) extends
continuously to Rm−1

≥0 , and is convex and piecewise of the form

Swantm(E ,r) = c1r1 + · · ·+ cm−1rm−1 +d (c1, . . . ,cm−1,d ∈ Z).
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Overconvergent F-isocrystals

Subharmonicity and monotonicity

Assume k = kalg. Let X be a smooth proper irreducible surface, and let Z be a
curve in X. Let E be an overconvergent F-isocrystal on some open dense
subscheme of X. For z ∈ Z, let t,x be local coordinates at z with Z = V(t). Let
Swan′(E ,z) be the derivative as r → 0+ of the conductor of E along
vr,z : x ∼ tr, normalized with respect to t.

Theorem
There exists ` ∈ {0, . . . , rank(E )} such that:

(a) we have Swan′(E ,z)+ ` = 0 for all but finitely many z;

(b) we have Swan′(E ,z)+ `≤ 0 if E is defined on the complement of Z in a
neighborhood of z;

(c)
∑
z∈Z

(Swan′(E ,z)+ `)≥ (2−2g(Z))`−Z2 Swan(E ,Z).
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Overconvergent F-isocrystals

Interpretation on Berkovich space

Keep notation from the previous slide. The set of valuations centered on z
form (almost) a Berkovich analytic space. The above results can be
interpreted as potential-theoretic properties of the conductor function (à la
Thuillier) except that they are only defined for the metric topology, not the
Berkovich topology.

The main problem is that one can have ` 6= 0. E.g., for a Dwork isocrystal

∇(v) = πv⊗d(xat−b)

in the (x, t)-plane, along t = 0 we have ` = 0,1 according as b is not, is
divisible by p.

These properties are needed for semistable reduction for overconvergent
F-isocrystals on surfaces (specifically, for local semistable reduction at
infinitely singular valuations with non-finitely generated value group).
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Overconvergent F-isocrystals

Transfer from `-adic to p-adic?

Again, we can define a conductor for a lisse `-adic sheaf on a variety,
measured along a boundary divisor. It is much less clear how to transfer
p-adic results, but we expect it to be possible.

This would imply good variational properties of the Abbes-Saito logarithmic
conductor in equal characteristic.
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Overconvergent F-isocrystals

Complex analogues?

There are some questions about irregularity of meromorphic connections on
complex analytic varieties of dimension greater than 1, that seem analogous to
what we consider here. Can these ideas be transferred to the (probably
simpler) setting over C?
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Overconvergent F-isocrystals

The end

Thank you. (Arigatō gozaimashita.)
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