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Overview: Hodge theory in char. p

• p-adic Galois representations of a local field k((t))
of characteristic p > 0 correspond naturally to
one-dimensional differential modules on rigid
analytic annuli over p-adic fields.

• In this correspondence, wild ramification
corresponds to failure of convergence of certain
local horizontal sections, and to nonvanishing of
irregularity of connections.

• Goal here: extend this correspondence to p-adic
representations of, e.g., πet

1 (Spec k[[x, y]][1/x, 1/y]).
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More context

This arises in the context of a conjecture of Shiho, on
constructing logarithmic extensions of overconvergent
F -isocrystals on k-varieties; one wants to measure
variation of “p-adic local monodromy” on a surface as
one varies the choice of a boundary divisor.
It seems to be closely analogous to conjectures of
Sabbah (currently being considered by Y. André) on
variation of irregularity of an algebraic connection on a
surface, again as one varies the choice of a boundary
divisor.
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Notation

• k := an algebraically closed field of char. p > 0

• K := FracW for W = W (k)

• q := a fixed power of p

• σ := the q-power Frobenius on k,W,K

• Gk((t)) := Gal(k((t))sep/k((t)))

• A(r, 1) := the rigid analytic annulus r < |t| < 1 over
K

• R := ∪0<r<1Γ(A(r, 1),O) (the Robba ring)
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p-adic differential modules

Extend σ to R, e.g., by setting σ(t) = tq. A Frobenius
action on a module with integrable connection
(∇-module) E over R is an isomorphism F : σ∗E ∼= E.
Theorem (André, K, Mebkhout). There is an equivalence of
categories

{

discrete-unipotent reps
Gk((t))×K → GL∗(K)

}

↔

{

∇-modules on R admit-
ting a Frobenius action

}

.

Here discrete reps of Gk((t)) correspond to étale
∇-modules, a/k/a those admitting unit-root Frobenius
actions (Tsuzuki).
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Generic radii of convergence

Let E be a ∇-module over R. For r ∈ (0, 1) where E is
defined, consider any tr with |tr| = r in any complete
extension K ′ of K. Compute the supremum of those
λ ≤ r for which E has a basis of horizontal sections on
the disc

{t ∈ A(r, 1) : 0 < |t − tr| < λ};

let R(E , r) be the infimum over all choices of K ′, tr.
R(E , r) = generic radius of convergence of E at r
(Christol-Dwork).
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An example

Suppose πp−1 = −p. Pick a positive integer m coprime
to p. Define E of rank 1:

∇v = mπt−m−1
v ⊗ dt.

Then a horizontal section around tr is

expπ(t−m − t−m
r )v,

which converges for |t−m − t−m
r | < 1 ⇔ |t− tr| < r1+m, so

R(E , r) = r1+m.
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Ramification and convergence

Let E be a ∇-module over R. We say E has highest
break β if R(E , r) = r1+β for r ∈ (0, 1) close enough to 1.

Theorem (André, Christol-Mebkhout, Crew, K, Matsuda, Tsuzuki).
If E is a ∇-module over R admitting a Frobenius structure, then it
has highest break equal to the highest ramification break of the
corresponding Gk((t)) × K-representation (ignoring the K).
For instance, the example on the previous slide
corresponds to a nontrivial character of

k((t))[z]/(zp − z − t−m)

which indeed has highest break m when m is coprime
to p.
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Swan conductors and irregularity

Swan conductors on the representation side
correspond to certain sums of highest breaks on the
differential side; Christol-Mebkhout showed these can
be interpreted as irregularities of p-adic connections in
the sense of Robba. (These can be computed from
algebraic irregularities by adding certain p-adic
correction terms.)
This yields a Grothendieck-Ogg-Shafarevich formula
in rigid cohomology, by showing that the p-adic
corrections sum to a discrepancy between
Euler-Poincaré characteristics in algebraic and p-adic
settings. This uses both complex and rigid GAGA!
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A higher-dimensional situation

Consider a ∇-module E on the rigid space

{ρx < |x| < 1, ρy < |y| < 1} ⊂ A2
K .

Assume hereafter that E admits a Frobenius action
σ∗E ∼= E, where σ is extended to an action on An

K via
x 7→ xq, y 7→ yq.
The subcategory of such E admitting unit-root
Frobenius actions is equivalent to discrete K-linear
representations of π1(Spec k[[x, y]][1/x, 1/y]). It is
unclear what such statement could be made about the
whole category.
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Generic radii of convergence, again

For R = (rx, ry) ∈ (ρx, 1) × (ρy, 1), consider any xR, yR of
norms rx, ry in any complete extension K ′ of K.
Compute the supremum of those λ ≤ 1 for which E has
a basis of horizontal sections on

|x − xR| < λrx, |y − yR| < λry,

then let T (E , R) be the infimum over all choices of
K ′, xR, yR. This function is convex in R, hence
continuous.
Here T stands for “toric normalization”: this
construction commutes in a suitable sense (for R close
to 1) with blowups at (0, 0), e.g., x 7→ xy.
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An example

Let E be the rank 1 ∇-module:

∇v = πv ⊗ d(x−ey−f )

where at least one of e, f is not divisible by p. Then

T (E , R) = min{1, re
xrf

y }.

This corresponds to a character of the extension
defined by zp − z = x−ey−f .
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Rationality

For E , rx, ry fixed and c → 0+, we have

log T (E , (rc
x, rc

y)) =
c

m
(a log(rx) + b log(ry))

for some a, b ∈ Z depending on E , rx, ry only, and some
m ∈ Z>0 depending on rank(E) only.
Moreover, a, b are piecewise constant as a function of
l = log(ry)/ log(rx).
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Highest breaks

We may think of

lim
c→0+

log T (E , (rc
x, rlc

x ))

c log(rx)

as a “highest break” of E along “the divisor y ∼ xl”.
This makes sense for l ∈ Q (write l = r/s and consider
the exceptional divisor where xr ∼ ys), but also for
l /∈ Q using an analogue of the AKM theorem for “fake
annuli”.

Convergence of solutions of p-adic differential equations and higher-dimensional ramification theory – p.14/20



Swan conductors

By adding highest breaks, we get a “Swan conductor”
for E along y ∼ xl. Warning: continuity of this function
is not yet obvious; it will follow from the harmonicity
result to follow.
For l ∈ Q, the Swan conductor has denominator
bounded by the denominator of l times some constant.
Question (Hasse-Arf problem). Is that constant 1?

Maybe one can answer this by giving a cohomological
interpretation (via a higher-dimensional version of
Robba irregularity)?
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Reconciliation (after Matsuda)

Say we start with a representation of

πet
1 (Spec k[[x, y]][1/x, 1/y])

and convert into a ∇-module E. For l = r/s ∈ Q,
compute the “highest break” of the corresponding rep
of GF for F = k(xr/ys)((t)), where t = xuyv with
ru + sv = 1. (Reminder: F is a local field with imperfect
residue field, so usual ramification theory does not
apply.)
Question. Is this consistent with Abbes–T. Saito’s definition of
highest breaks? (Yes for Artin-Schreier.) Or Zhukov’s definition
over k((xr/ys))((t))?
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Harmonicity

One can define Swan conductors on (the interior of)
the Berkovich affine line over k((x)); working along
y ∼ xl corresponds to looking at the generic point of
the disc |y| = |x|l. This space is an “infinitely branched
tree” and one can define harmonic functions on it; see
the Rennes PhD thesis of A. Thuillier.
Rough explanation: at any point, the function is linear
with the same slope along all but finitely many of the
branches, and the slopes along the other branches
average to this common value.
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Harmonicity (contd.)

Proposition. The highest break and Swan conductor are
harmonic functions on the Berkovich line; in particular, they are
continuous.
Idea of proof: use Frobenius antecedent theorem
(Christol-Dwork) to read the highest break off of a
certain Newton polygon. (Compare: the proof of
existence of the highest break in the original situation
of Christol-Mebkhout.)
Exercise: do this directly for ∇-modules corresponding
to Artin-Schreier characters.
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Deligne-Laumon semicontinuity

Proposition. Say E is actually defined on

{(x, y) ∈ A2
K : |x| ≤ 1, ρ < |y| ≤ 1}

(e.g., E arises from an overconvergent F -isocrystal on
A1

k × Gm,k). Then the highest break along y ∼ xl is a decreasing
function of l.

This follows from a version of semicontinuity in rigid
cohomology, with a similar proof (using a vanishing
cycles construction, as in the proof of rigid “Weil II”).
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Fini
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