Convergence of solutions of p-adic differential equations and higher-dimensional ramification theory

Kiran S. Kedlaya (MIT)

kedlaya@mit.edu

Hodge Theory, San Servolo, Venice

June 21, 2006 (corrected version)

This lecture brought to you by the Clay Mathematics Institute, the US National Science Foundation (grant DMS-0400747), and the conference organizers. p-adic Galois representations of a local field k((t)) of characteristic p > 0 correspond naturally to one-dimensional differential modules on rigid analytic annuli over p-adic fields.

- p-adic Galois representations of a local field k((t)) of characteristic p > 0 correspond naturally to one-dimensional differential modules on rigid analytic annuli over p-adic fields.
- In this correspondence, wild ramification corresponds to failure of convergence of certain local horizontal sections, and to nonvanishing of irregularity of connections.

- p-adic Galois representations of a local field k((t)) of characteristic p > 0 correspond naturally to one-dimensional differential modules on rigid analytic annuli over p-adic fields.
- In this correspondence, wild ramification corresponds to failure of convergence of certain local horizontal sections, and to nonvanishing of irregularity of connections.
- Goal here: extend this correspondence to *p*-adic representations of, e.g., $\pi_1^{\text{et}}(\operatorname{Spec} k[[x, y]][1/x, 1/y])$.

This arises in the context of a conjecture of Shiho, on constructing logarithmic extensions of overconvergent F-isocrystals on k-varieties; one wants to measure variation of "p-adic local monodromy" on a surface as one varies the choice of a boundary divisor.

It seems to be closely analogous to conjectures of Sabbah (currently being considered by Y. André) on variation of irregularity of an algebraic connection on a surface, again as one varies the choice of a boundary divisor.

- k := an algebraically closed field of char. p > 0
- $K := \operatorname{Frac} W$ for W = W(k)

•
$$q := a$$
 fixed power of p

- $\sigma :=$ the *q*-power Frobenius on k, W, K
- $G_{k((t))} := \text{Gal}(k((t))^{\text{sep}}/k((t)))$
- A(r,1) := the rigid analytic annulus r < |t| < 1 over K
- $\mathcal{R} := \bigcup_{0 < r < 1} \Gamma(A(r, 1), \mathcal{O})$ (the Robba ring)

Extend σ to \mathcal{R} , e.g., by setting $\sigma(t) = t^q$. A *Frobenius action* on a module with integrable connection (∇ -module) \mathcal{E} over \mathcal{R} is an isomorphism $F : \sigma^* \mathcal{E} \cong \mathcal{E}$. **Theorem** (André, K, Mebkhout). *There is an equivalence of categories*

 $\begin{cases} \text{discrete-unipotent reps} \\ G_{k((t))} \times K \to \operatorname{GL}_{*}(K) \end{cases} \leftrightarrow \begin{cases} \nabla \text{-modules on } \mathcal{R} \text{ admit-} \\ \text{ting a Frobenius action} \end{cases}.$

Here discrete reps of $G_{k((t))}$ correspond to *étale* ∇ -modules, a/k/a those admitting unit-root Frobenius actions (Tsuzuki).

Let \mathcal{E} be a ∇ -module over \mathcal{R} . For $r \in (0,1)$ where \mathcal{E} is defined, consider any t_r with $|t_r| = r$ in any complete extension K' of K. Compute the supremum of those $\lambda \leq r$ for which \mathcal{E} has a basis of horizontal sections on the disc

$$\{t \in A(r,1) : 0 < |t - t_r| < \lambda\};\$$

let $R(\mathcal{E}, r)$ be the infimum over all choices of K', t_r .

 $R(\mathcal{E}, r) = generic radius of convergence of \mathcal{E}$ at r (Christol-Dwork).

Suppose $\pi^{p-1} = -p$. Pick a positive integer *m* coprime to *p*. Define \mathcal{E} of rank 1:

$$\nabla \mathbf{v} = m\pi t^{-m-1}\mathbf{v} \otimes dt.$$

Then a horizontal section around t_r is

$$\exp\pi(t^{-m}-t_r^{-m})\mathbf{v},$$

which converges for $|t^{-m} - t_r^{-m}| < 1 \Leftrightarrow |t - t_r| < r^{1+m}$, so

$$R(\mathcal{E}, r) = r^{1+m}.$$

Let \mathcal{E} be a ∇ -module over \mathcal{R} . We say \mathcal{E} has *highest* break β if $R(\mathcal{E}, r) = r^{1+\beta}$ for $r \in (0, 1)$ close enough to 1.

Let \mathcal{E} be a ∇ -module over \mathcal{R} . We say \mathcal{E} has *highest* break β if $R(\mathcal{E}, r) = r^{1+\beta}$ for $r \in (0, 1)$ close enough to 1.

Theorem (André, Christol-Mebkhout, Crew, K, Matsuda, Tsuzuki). If \mathcal{E} is a ∇ -module over \mathcal{R} admitting a Frobenius structure, then it has highest break equal to the highest ramification break of the corresponding $G_{k((t))} \times K$ -representation (ignoring the K). Let \mathcal{E} be a ∇ -module over \mathcal{R} . We say \mathcal{E} has *highest* break β if $R(\mathcal{E}, r) = r^{1+\beta}$ for $r \in (0, 1)$ close enough to 1.

Theorem (André, Christol-Mebkhout, Crew, K, Matsuda, Tsuzuki). If \mathcal{E} is a ∇ -module over \mathcal{R} admitting a Frobenius structure, then it has highest break equal to the highest ramification break of the corresponding $G_{k((t))} \times K$ -representation (ignoring the K). For instance, the example on the previous slide corresponds to a nontrivial character of

$$k((t))[z]/(z^p - z - t^{-m})$$

which indeed has highest break m when m is coprime to p.

Swan conductors on the representation side correspond to certain sums of highest breaks on the differential side; Christol-Mebkhout showed these can be interpreted as irregularities of *p*-adic connections in the sense of Robba. (These can be computed from algebraic irregularities by adding certain *p*-adic correction terms.)

This yields a Grothendieck-Ogg-Shafarevich formula in rigid cohomology, by showing that the *p*-adic corrections sum to a discrepancy between Euler-Poincaré characteristics in algebraic and *p*-adic settings. This uses both complex and rigid GAGA! Consider a ∇ -module \mathcal{E} on the rigid space

$$\{\rho_x < |x| < 1, \rho_y < |y| < 1\} \subset \mathbb{A}^2_K.$$

Assume hereafter that \mathcal{E} admits a Frobenius action $\sigma^* \mathcal{E} \cong \mathcal{E}$, where σ is extended to an action on \mathbb{A}^n_K via $x \mapsto x^q, y \mapsto y^q$.

The subcategory of such \mathcal{E} admitting unit-root Frobenius actions is equivalent to discrete *K*-linear representations of $\pi_1(\operatorname{Spec} k[[x, y]][1/x, 1/y])$. It is unclear what such statement could be made about the whole category. For $R = (r_x, r_y) \in (\rho_x, 1) \times (\rho_y, 1)$, consider any x_R, y_R of norms r_x, r_y in any complete extension K' of K. Compute the supremum of those $\lambda \leq 1$ for which \mathcal{E} has a basis of horizontal sections on

$$|x - x_R| < \lambda r_x, |y - y_R| < \lambda r_y,$$

then let $T(\mathcal{E}, R)$ be the infimum over all choices of K', x_R, y_R . This function is convex in R, hence continuous.

Here *T* stands for "toric normalization": this construction commutes in a suitable sense (for *R* close to 1) with blowups at (0, 0), e.g., $x \mapsto xy$.

Let \mathcal{E} be the rank 1 ∇ -module:

$$\nabla \mathbf{v} = \pi \mathbf{v} \otimes d(x^{-e}y^{-f})$$

where at least one of e, f is not divisible by p. Then

$$T(\mathcal{E}, R) = \min\{1, r_x^e r_y^f\}.$$

This corresponds to a character of the extension defined by $z^p - z = x^{-e}y^{-f}$.

Rationality

For \mathcal{E}, r_x, r_y fixed and $c \to 0^+$, we have

$$\log T(\mathcal{E}, (r_x^c, r_y^c)) = \frac{c}{m} (a \log(r_x) + b \log(r_y))$$

for some $a, b \in \mathbb{Z}$ depending on \mathcal{E}, r_x, r_y only, and some $m \in \mathbb{Z}_{>0}$ depending on $rank(\mathcal{E})$ only.

Moreover, a, b are piecewise constant as a function of $l = \log(r_y) / \log(r_x)$.

We may think of

$$\lim_{c \to 0^+} \frac{\log T(\mathcal{E}, (r_x^c, r_x^{lc}))}{c \log(r_x)}$$

as a "highest break" of \mathcal{E} along "the divisor $y \sim x^{l}$ ". This makes sense for $l \in \mathbb{Q}$ (write l = r/s and consider the exceptional divisor where $x^r \sim y^s$), but also for $l \notin \mathbb{Q}$ using an analogue of the AKM theorem for "fake annuli". By adding highest breaks, we get a "Swan conductor" for \mathcal{E} along $y \sim x^l$. Warning: continuity of this function is not yet obvious; it will follow from the harmonicity result to follow.

For $l \in \mathbb{Q}$, the Swan conductor has denominator bounded by the denominator of l times some constant.

Question (Hasse-Arf problem). *Is that constant* 1?

Maybe one can answer this by giving a cohomological interpretation (via a higher-dimensional version of Robba irregularity)?

Say we start with a representation of

$$\pi_1^{\text{et}}(\operatorname{Spec} k[[x, y]][1/x, 1/y])$$

and convert into a ∇ -module \mathcal{E} . For $l = r/s \in \mathbb{Q}$, compute the "highest break" of the corresponding rep of G_F for $F = k(x^r/y^s)((t))$, where $t = x^u y^v$ with ru + sv = 1. (Reminder: F is a local field with *imperfect* residue field, so usual ramification theory does not apply.)

Question. Is this consistent with Abbes–T. Saito's definition of highest breaks? (Yes for Artin-Schreier.) Or Zhukov's definition over $k((x^r/y^s))((t))$?

One can define Swan conductors on (the interior of) the Berkovich affine line over k((x)); working along $y \sim x^l$ corresponds to looking at the generic point of the disc $|y| = |x|^l$. This space is an "infinitely branched tree" and one can define *harmonic functions* on it; see the Rennes PhD thesis of A. Thuillier.

Rough explanation: at any point, the function is linear with the same slope along all but finitely many of the branches, and the slopes along the other branches average to this common value. **Proposition.** The highest break and Swan conductor are harmonic functions on the Berkovich line; in particular, they are continuous.

Idea of proof: use Frobenius antecedent theorem (Christol-Dwork) to read the highest break off of a certain Newton polygon. (Compare: the proof of existence of the highest break in the original situation of Christol-Mebkhout.)

Exercise: do this directly for ∇ -modules corresponding to Artin-Schreier characters.

Proposition. Say \mathcal{E} is actually defined on

 $\{(x, y) \in \mathbb{A}_K^2 : |x| \le 1, \rho < |y| \le 1\}$

(e.g., \mathcal{E} arises from an overconvergent F-isocrystal on $\mathbb{A}^1_k \times \mathbb{G}_{m,k}$). Then the highest break along $y \sim x^l$ is a decreasing function of l.

This follows from a version of semicontinuity in rigid cohomology, with a similar proof (using a vanishing cycles construction, as in the proof of rigid "Weil II").

Fini