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Overview: zeta functions of surfaces

Let X be a smooth projective surface over a
finite field [F,. Its zeta function
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where each P;(T) € Z[T] has P;(0) = 1 and
all C-roots of absolute value ¢~ %2. Also, if
P;(r) =0, then Py_;(¢2/r)) = 0.

Problem: describe an algorithm (given a class
of X's) that given X, finds Py, P>, P3. Usually
Py, P3 are easy, and P> is the hard part.



Motivation: Goppa codes

Goppa recipe for error-correcting codes over
Fq: take an ample divisor H on X, and form
subspace of [[,.cx\ g Iq given by

[(F@))gex\s : | € TCXLO(-H))}.

Traditionally X is a curve with many Fg-points.

Voloch-Zarzar: take X to be a surface; get
good examples of LDPC (low-density parity
check) codes. (The perp space has many short
vectors coming from curves on X.)

To control minimum distance, must control Pi-
card number (arithmetic Néron-Severi rank) of
X, which is < ordel/qPQ(T) (equality under
Tate's conjecture).



Weil cohomologies

T here are various ways to attach vector spaces
H*(X) equipped with a linear endomorphism F
such that

P(T) = det(1 — FT, H'(X)),

whence

4
#XFp) = > (1) Trace(F", H(X)).
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For theorems, one usually uses étale (¢-adic)
cohomology; but this theory is not practical for
algorithms (except on curves of low genus).

We instead use p-adic (crystalline) cohomol-
ogy, which can be computed explicitly (a la
Dwork, Monsky-Washnitzer).



Smooth surfaces in P3

Let Q(x,y, z,w) be a nonsingular homogeneous
polynomial over Fp, and take X = V(Q); then
P1(T) = P3(T) = 1, so the problem is to find
Ps.

The p-adic H? here is described by a recipe of
Griffiths...



The action of Frobenius



An example: degree 4 over 3

Over F3, take

Q= zt — a:y3 -+ a:wa + xyzw + :cywz
— rzw? -+ y4 -+ y3w — y2zw —+ 24 + w?

In Magma, we compute a Frobenius matrix mod-
ulo 33, obtaining

3P>(T/3) = 37°1 + 5720 + 6719 + 7718 4 5717
+ 4T16 + 2T15 o T14 o 3T13 o 5T12
— 57l 5710 _ 579 378 _ 77
+ 27T% + 47> 4+ 5T% + 773 4+ 672
+57T+4+3 (mod 32).

This requires 731 CPU-seconds and 53 MB on
dwork, a Sun workstation with dual Opteron
246 CPUs running at 2 GHz (currently in 32-
bit mode) with 2GB of RAM.



An example: degree 4 over 3 (contd.)

Note that 3P>(7T/3) € Z[T] by Hodge-Newton
polygon comparison, and has C-roots on the
unit circle. This apparently implies

3P>(7T/3) = 37° + 5720 + 671° 4 7718 4 5717
44716 4 o715 _ pld _ 3713 _ gpl2
— 57t — 5710 579 378 _ 77
+27% +4T° 4+ 5T* 4+ 773 + 677
+ 5T + 3;
this is checked by Maple code by Andre Wibisono,
using floating-point arithmetic. (To fix this,
Wibisono is rewriting in SAGE/Singular using

the real root finding library, which uses only
rational numbers.)



Variations

de Jong has C code doing the analogous calcu-
lation for surfaces in weighted projective spaces.
Still needed: precision estimates.

In progress (with Po-Ning Chen et al.): nonde-
generate hypersurfaces in toric varieties. (For
curves in toric surfaces, see Castryck-Denef-
Vercauteren.)



