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Overview: zeta functions of surfaces

Let X be a smooth projective surface over a

finite field Fq. Its zeta function

ζX(T ) =
∏

x∈X

(1− Tdeg(x))−1

= exp

 ∞∑
n=1

#X(Fqn)
Tn

n


factors as

ζX(T ) =
P1(T )P3(T )

(1− T )(1− q2T )P2(T )

where each Pi(T ) ∈ Z[T ] has Pi(0) = 1 and

all C-roots of absolute value q−i/2. Also, if

Pi(r) = 0, then P4−i(q
−2/r)) = 0.

Problem: describe an algorithm (given a class

of X’s) that given X, finds P1, P2, P3. Usually

P1, P3 are easy, and P2 is the hard part.
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Motivation: Goppa codes

Goppa recipe for error-correcting codes over

Fq: take an ample divisor H on X, and form

subspace of
∏

x∈X\H Fq given by

{(f(x))x∈X\H : f ∈ Γ(X,O(−H))}.

Traditionally X is a curve with many Fq-points.

Voloch-Zarzar: take X to be a surface; get

good examples of LDPC (low-density parity

check) codes. (The perp space has many short

vectors coming from curves on X.)

To control minimum distance, must control Pi-

card number (arithmetic Néron-Severi rank) of

X, which is ≤ ordT=1/q P2(T ) (equality under

Tate’s conjecture).
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Weil cohomologies

There are various ways to attach vector spaces

Hi(X) equipped with a linear endomorphism F

such that

Pi(T ) = det(1− FT, Hi(X)),

whence

#X(Fqn) =
4∑

i=0

(−1)i Trace(Fn, Hi(X)).

For theorems, one usually uses étale (`-adic)

cohomology; but this theory is not practical for

algorithms (except on curves of low genus).

We instead use p-adic (crystalline) cohomol-

ogy, which can be computed explicitly (à la

Dwork, Monsky-Washnitzer).
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Smooth surfaces in P3

Let Q(x, y, z, w) be a nonsingular homogeneous

polynomial over Fp and take X = V (Q); then

P1(T ) = P3(T ) = 1, so the problem is to find

P2.

The p-adic H2 here is described by a recipe of

Griffiths...
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The action of Frobenius

...
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An example: degree 4 over F3

Over F3, take

Q = x4 − xy3 + xy2w + xyzw + xyw2

− xzw2 + y4 + y3w − y2zw + z4 + w4.

In Magma, we compute a Frobenius matrix mod-

ulo 33, obtaining

3P2(T/3) ≡ 3T21 + 5T20 + 6T19 + 7T18 + 5T17

+ 4T16 + 2T15 − T14 − 3T13 − 5T12

− 5T11 − 5T10 − 5T9 − 3T8 − T7

+ 2T6 + 4T5 + 5T4 + 7T3 + 6T2

+ 5T + 3 (mod 32).

This requires 731 CPU-seconds and 53 MB on

dwork, a Sun workstation with dual Opteron

246 CPUs running at 2 GHz (currently in 32-

bit mode) with 2GB of RAM.
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An example: degree 4 over F3 (contd.)

Note that 3P2(T/3) ∈ Z[T ] by Hodge-Newton

polygon comparison, and has C-roots on the

unit circle. This apparently implies

3P2(T/3) = 3T21 + 5T20 + 6T19 + 7T18 + 5T17

+ 4T16 + 2T15 − T14 − 3T13 − 5T12

− 5T11 − 5T10 − 5T9 − 3T8 − T7

+ 2T6 + 4T5 + 5T4 + 7T3 + 6T2

+ 5T + 3;

this is checked by Maple code by Andre Wibisono,

using floating-point arithmetic. (To fix this,

Wibisono is rewriting in SAGE/Singular using

the real root finding library, which uses only

rational numbers.)
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Variations

de Jong has C code doing the analogous calcu-

lation for surfaces in weighted projective spaces.

Still needed: precision estimates.

In progress (with Po-Ning Chen et al.): nonde-

generate hypersurfaces in toric varieties. (For

curves in toric surfaces, see Castryck-Denef-

Vercauteren.)
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