Given \(x\text{,}\) define the incomplete logarithm
\begin{equation*}
\lambda(\ell) = \log \ell - \sum_{k \leq x^{1/5}, k|\ell} \Lambda(k);
\end{equation*}
then
(19.2.1) with
\(y=z=x^{1/5}\) implies that for
\(x^{1/5} \lt n \leq x\text{,}\)
\begin{equation}
\Lambda(n) = \sum_{\ell m = n, m \leq x^{1/5}}
\lambda(\ell)\mu(m) +
\sum_{\ell m = n, x^{1/5} \lt m \leq x^{4/5}}
\lambda(\ell)\mu(m).\tag{19.2.2}
\end{equation}
Let
\(\Lambda_0(n)\) and
\(\Lambda_1(n)\) denote the two sums on the right side of
(19.2.2). Then
\begin{equation*}
D_\Lambda(x; N, m) = D_{\Lambda_0}(x; N, m) + D_{\Lambda_1}(x; N, m)
+ O(x^{1/5} \log x),
\end{equation*}
with the error term coming from terms with \(n \lt x^{1/5}\text{.}\)
It is straightforward to prove that
\begin{equation}
\sum_{N \leq Q} \max_{m \in (\ZZ/N\ZZ)^*} |D_{\Lambda_0}(x; N, m)| = O(Q x^{2/5} \log x),\tag{19.2.3}
\end{equation}
so we concentrate on the contribution from
\(\Lambda_1\text{.}\) We want to apply
Theorem 19.3, but we cannot write the sum
\(\Lambda_1(n)\) as a convolution because of the restriction
\(n \leq x\text{.}\)
To get around this, we cut the interval \(1 \leq n \leq x\) into \(O(\delta^{-1})\) subintervals of the form \(y \lt n \leq (1 + \delta)y\text{,}\) where \(x^{1/5} \lt \delta \leq 1\) is a parameter we will set later. We cover the summation range
\begin{equation*}
\ell m = n, x^{1/5} \lt m \leq x
\end{equation*}
by ranges
\begin{equation*}
\ell m = n, L \lt \ell \leq (1+\delta) L, M \lt m \leq (1 + \delta) M
\end{equation*}
with \(L,M\) taking values \((1+\delta)^j\text{.}\) We run \(L,M\) over the ranges \(x^{1/5} \lt L,M \lt x^{4/5}\) with \(LM = x\text{;}\) the only trouble is that we do not properly cover the areas \(n \lt x^{1/5}\) and \((1+\delta)^{-1} x \lt n \lt (1+\delta)x\text{.}\) The contribution from the error regions is \(O(\delta N^{-1} x \log x)\text{.}\)
What remains is the sum over \(L,M\) of
\begin{equation*}
D(L,M; N, m) = \sum_{l,m \equiv m \pmod{N}} \lambda(\ell) \mu(m) -
\frac{1}{\phi(N)} \sum_{lm \in (\ZZ/N\ZZ)^*},
\end{equation*}
where
\(l,m\) run over
\(L \lt \ell \leq (1+\delta) L, M \lt m \leq (1 + \delta) M\text{.}\) For each
\(L,M\text{,}\) we may apply
Theorem 19.3 with
\(\Delta = (\log x)^{-A}\text{;}\) the hypothesis
(19.1.1) is satisfied by virtue of the Siegel-Walfisz theorem (
Theorem 11.11). If we take
\(Q = \Delta x^{1/2}\text{,}\) we get
\begin{equation*}
\sum_{N \leq Q} \max_{m \in (\ZZ/N\ZZ)^*} |D(L,M; N,m)| = O(\delta \Delta x (\log x)^3).
\end{equation*}
Summing over \(L,M\text{,}\) we obtain
\begin{equation*}
\sum_{N \leq Q} \max_{m \in (\ZZ/N\ZZ)^*} |D_{\Lambda_1}(x; N,m)|
= O((\delta^{-1} x + \Delta) x (\log x)^3.
\end{equation*}
We now choose
\(\delta = \Delta^{1/2}\text{,}\) so this bound becomes
\(\Delta^{1/2} x (\log x)^3\text{.}\) Adding back in
(19.2.3) gives
\begin{equation*}
\sum_{N \leq \Delta x^{1/2}} \max_{m \in (\ZZ/N\ZZ)^*}
\left| \psi(x; N, m) - \frac{\psi(x)}{\phi(N)} \right|
= O(\Delta^{1/2} x (\log x)^3).
\end{equation*}
Using the prime number theorem with error term (
Theorem 8.7), we can take
\(\psi(x) = x + O(\delta x)\text{.}\) This gives the claim with
\(B(A) = 2A + 6\text{.}\)