The existence of the internal Hom is formal, and since
\(\iHom_{\Mod_{R_\solid}}(M, \bullet)\) is a right adjoint it automatically preserves products. It thus suffices to check
(1.8) when
\(J\) is a singleton, that is,
\begin{equation*}
\iHom_{R_\solid}\left(\prod_I R_\solid, R_\solid\right) \cong \bigoplus_I R_{\solid}.
\end{equation*}
The map
\begin{equation}
\bigoplus_I R_\solid \to \iHom_{R_\solid}\left(\prod_I R_\solid, R_\solid\right)\tag{1.9}
\end{equation}
is the image of the identity map on \(\prod_I R_\solid\) via a series of identifications:
\begin{align*}
\Hom_{R_\solid}\left(\prod_I R_\solid, \prod_I R_\solid\right)
& \cong \prod_I \Hom_{R_\solid}\left(\prod_I R_\solid, R_\solid\right)\\
& \cong \Hom_{R_\solid}\left(\bigoplus_I \prod_I R_\solid, R_\solid\right) \\
& \cong \Hom_{R_\solid}\left(\left(\bigoplus_I R_\solid\right) \otimes_{R_\solid} \prod_I R_\solid, R_\solid\right) \\
& \cong \Hom_{R_\solid}\left(\left(\bigoplus_I R_\solid\right), \iHom_{R_\solid}\left(\prod_I R_\solid, R_\solid\right)\right)\text{.}
\end{align*}
To check that
(1.9) is an isomorphism, we check that the induced natural transformation of representable functors
\begin{equation*}
\Hom_{R_\solid}\left(\bullet, \bigoplus_I R_\solid\right) \to \Hom_{R_\solid}\left(\bullet, \iHom_{R_\solid}\left(\prod_I R_\solid, R_\solid\right)\right)
\end{equation*}
is a natural isomorphism. This we can test at the level of compact projective generators, so we may replace \(\bullet\) with \(\prod_K R_\solid\text{.}\) On one hand, by Hom-tensor adjunction,
\begin{align*}
\Hom_{R_\solid}\left(\prod_K R_\solid, \iHom_{R_\solid}\left(\prod_I R_\solid, R_\solid\right)\right)
& \cong \Hom_{R_\solid}\left(\prod_{K \times I} R_\solid, R_\solid\right) \\
& \cong \bigoplus_{K \times I} R\text{.}
\end{align*}
On the other hand, \(\prod_K R_\solid\) being compact means that taking Hom out of it preserves coproducts, and so
\begin{align*}
\Hom_{R_\solid}\left(\prod_K R_\solid, \bigoplus_I R_\solid\right) &= \bigoplus_I \Hom_{R_\solid}\left(\prod_K R_\solid, R_\solid\right) \\
&\cong \bigoplus_{K \times I} R\text{.}
\end{align*}
This completes the proof.