References Bibliography
[1]
P. Achinger, “Wild ramification and \(K(\pi, 1)\) spaces”, Inventiones Mathematicae 210 (2017), 453–499.
[2]
G. Almkvist, “The Grothendieck ring of the category of endomorphisms”, Journal of Algebra 28 (1974), 375–388.
[3]
V. Angeltveit, “The norm map of Witt vectors”, Comptes Rendus Mathematique 353 (2015), 381–386.
[4]
Y. André, “Le lemme d'Abhyankar perfectoïde”, Publications Mathématiques de l’IHÉS 127 (2018), 1–70.
[5]
Y. André, “La conjecture du facteur direct”, Publications Mathématiques de l’IHÉS 127 (2018), 71–93.
[6]
J. Anschütz and A.C. Le Bras,
“Prismatic Dieudonné theory”,
arXiv:1907.10525v3 6 (2021).
[7]
K. Aomoto, “\(q\)-analogue of de Rham cohomology associated with Jackson integrals”, Proceedings of the Japan Academy Series A 66 (1990), 161–164.
[8]
K. Aomoto, “\(q\)-analogue of de Rham cohomology associated with Jackson integrals, II”, Proceedings of the Japan Academy Series A 66 (1990), 240–244.
[9]
A. Arabia, “Relèvements des algèbres lisses et de leurs morphismes”, Commentarii Mathematici Helvetici 76 (2001), 607–639.
[10]
S. Ariotta,
“Coherent cochain complexes and Beilinson \(t\)-structures, with an appendix by Achim Krause”,
arXiv:2109.01017v1 7 (2021).
[11]
J. Ax, “Zeros of polynomials over local fields—the Galois action”, Journal of Algebra 15 (1970), 417–428.
[12]
C. Barwick,
“Euler's Gamma function and the field with one element”,
lecture notes (MIT, 2017) 8 .
[13]
L. Berger, “Limites de représentations cristallines”, Compositio Mathematica 140 (2004), 1473–1498.
[14]
P. Berthelot, “Generalités sur les \(\lambda\)-anneaux”, in Séminaire de Géométrie Algébrique (SGA 6): Théorie des Intersections et Théorème de Riemann-Roch, Lecture Notes in Mathematics 225, Springer-Verlag, Berlin, 1971.
[15]
P. Berthelot and A. Ogus, Notes on Crystalline Cohomology, Princeton University Press, Princeton (1978).
[16]
B. Bhatt, “On the direct summand conjecture and its derived variant”, Inventiones Mathematicae 212 (2018), 297–317.
[17]
B. Bhatt,
“Cohen-Macaulyness of absolute integral closures”,
arXiv:2008.08070v1 9 (2020).
[18]
B. Bhatt,
“Geometric aspects of prismatic cohomology”,
Eilenberg lectures at Columbia University (fall 2018) 10 .
[19]
B. Bhatt and A.J. de Jong,
“Crystalline cohomology and de Rham cohomology”,
www.math.columbia.edu/~dejong/papers/crystalline-comparison.pdf
.
[20]
B. Bhatt, S. Iyengar, and L. Ma, “Regular rings and perfect(oid) algebras”, Communications in Algebra 47 (2019), 2367–2383.
[21]
B. Bhatt and A. Mathew, “The arc-topology”, Duke Mathematical Journal 170 (2021), 1899–1988.
[22]
B. Bhatt, M. Morrow, and P. Scholze, “Integral \(p\)-adic Hodge theory”, Publications Mathématiques de l'IHÉS 128 (2018), 219–397.
[23]
B. Bhatt, M. Morrow, and P. Scholze,
“Topological Hochschild homology and integral \(p\)-adic Hodge theory”,
arXiv:1802.03261v2 11 (2019).
[24]
B. Bhatt and P. Scholze, “Projectivity of the Witt vector affine Grassmannian”, Inventiones Mathematicae 209 (2017), 329–423.
[25]
B. Bhatt and P. Scholze,
“Prisms and prismatic cohomology”,
arXiv:1905.08229v2 12 (2019).
[26]
B. Bhatt and P. Scholze,
“Prismatic \(F\)-crystals and crystalline Galois representations”,
arXiv:2106.14735v1 13 (2021).
[27]
B. Bhatt, K. Schwede, and S. Takagi, “The weak ordinarity conjecture and \(F\)-singularities”, Advanced Studies in Pure Mathematics 74 (2017), 11–39.
[28]
J. Borger, “The basic geometry of Witt vectors, I: The affine case”, Algebra and Number Theory 5 (2011), 231–285.
[29]
J. Borger, “The basic geometry of Witt vectors, II: Spaces”, Mathematische Annalen 351 (2011), 871–933.
[30]
J. Borger,
“Witt vectors, lambda-rings, and arithmetic jet spaces”,
lecture notes (Copenhagen, spring 2016) 14 .
[31]
J. Borger and B. Wieland, “Plethystic algebra”, Advances in Mathematics 194 (2005), 246–283.
[32]
M. Borovoi and Y. Cornulier, “Conjugate complex homogeneous spaces with non-isomorphic fundamental groups”, C. R. Acad. Sci. Paris 353 (2015), 1001–1005.
[33]
O. Brinon and B. Conrad,
CMI Summer School Notes on \(p\)-adic Hodge Theory,
authors' draft 15 .
[34]
A. Buium, “Differential characters of abelian varieties over \(p\)-adic fields”, Inventiones Mathematicae 122 (1995), 309–340.
[35]
A. Buium, “Arithmetic analogues of derivations”, Journal of Algebra 198 (1997), 290–299.
[36]
B. Cais and C. Davis, “Canonical Cohen rings for norm fields”, International Mathematics Research Notices (2014), 10.1093/imrn/rnu098.
[37]
B. Cais and T. Liu, “On \(F\)-crystalline representations”, Documenta Mathematica 21 (2016), 223–270.
[38]
K. Česnavičius and T. Koshikawa, “The \(A_{\mathrm{inf}}\)-cohomology in the semistable case”, Compositio Mathematica 155 (2019), 2039–2128.
[39]
F. Cherbonnier and P. Colmez, “Représentations \(p\)-adiques surconvergentes”, Inventiones Mathematicae 133 (1998), 581–611.
[40]
C. Davis and K.S. Kedlaya, “On the Witt vector Frobenius”, Proceedings of the American Mathematical Society 142 (2014), 2211–2226.
[41]
V. Drinfeld, “Coverings of \(p\)-adic symmetric regions” (in Russian), Functional Analysis and Its Applications 10 (1976), 29–40.
[42]
V. Drinfeld,
“Prismatization”,
arXiv:2005.04746v2 16 (2021).
[43]
V. Drinfeld,
“A stacky approach to crystalline (and prismatic) cohomology”,
video 17 (2019).
[44]
A. Ducros, “About Hrushovski and Loeser's work on the homotopy type of Berkovich spaces”, in Nonarchimedean and Tropical Geometry, Simons Symposia, Springer International (2016), 99–131.
[45]
R. Elkik, “Solutions d'équations à coefficients dans un anneau hensélien”, Annales Scientifiques de l'École Normale Superieure 6 (1973), 553–603.
[46]
L. Fargues and J.-M. Fontaine, “Courbes et fibrés vectoriels en théorie de Hodge \(p\)-adique”, Astérisque 406 (2018).
[47]
L. Fargues and P. Scholze,
“Geometrization of the local Langlands correspondence”,
arXiv:2102.13459v1 18 (2021).
[48]
N.J. Fine, “Basic Hypergeometric Series and Applications”, Mathematical Series and Monographs 27, American Mathematical Society, Providence (1988).
[49]
J.-M. Fontaine, “Représentations \(p\)-adiques des corps locaux, I”, in The Grothendieck Festschrift, volume II, Progress in Mathematics 87, Birkhäuser, Boston (1990), 249–309.
[50]
J.-M. Fontaine, “Perfectoïdes, presque pureté et monodromie-poids (d’après Peter Scholze)”, Séminaire Bourbaki, volume 2011/2012, Astérisque 352 (2013).
[51]
J.-M. Fontaine and Y. Ouyang,
Theory of \(p\)-adic Galois Representations,
authors' draft 19 .
[52]
J.-M. Fontaine and J.-P. Wintenberger, “Le “corps des normes” de certaines extensions algébriques de corps locaux”, C. R. Acad. Sci. Paris Sér. A B 288 (1979), 367–370.
[53]
J. Fresnel and B. de Mathan, “Algèbres \(L^1\) \(p\)-adiques”, Bulletin de la Société Mathématique de France 106 (1978), 225–260.
[54]
O. Gabber and L. Ramero, Almost Ring Theory, Lecture Notes in Mathematics 1800, Springer-Verlag, Berlin (2003).
[55]
O. Gabber and L. Ramero,
“Foundations for almost ring theory–Release 7.5”,
arXiv:0409584v13 20 (2018).
[56]
R. Ghrist, “Three examples of applied and computational homology”, Nieuw Archief voor Wiskunde 9 (2008), 122–125.
[57]
D. Grayson, “Grothendieck rings and Witt vectors”, Communications in Algebra 6 (1978), 249–255.
[58]
D. Grayson, “The \(K\)-theory of endomorphisms”, Journal of Algebra 48 (1977), 439–446.
[59]
P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, New York (1978).
[60]
A. Grothendieck, “On the de Rham cohomology of algebraic varieties”, Publications Mathématiques de l’IHÉS 29 (1966), 95–103.
[61]
A. Grothendieck, “Crystals and the de Rham cohomology of schemes”, in Dix Exposés sur la Cohomologie des Schemas, North-Holland, Amsterdam (1968), 306–358.
[62]
M. Hazewinkel, Formal Groups and Applications, Pure and Applied Mathematics 78, Academic Press, New York (1978).
[63]
R. Heitmann and L. Ma,
“Extended plus closure in complete local rings”,
arXiv:1708.05761v3 21 (2018).
[64]
E. Heine, “Über die Reihe \(1 + \frac{(q^\alpha-1)(q^\beta-1)}{(q-1)(q^\gamma-1)} x + \frac{(q^\alpha-1)(q^{\alpha+1}-1)(q^\beta-1)(q^{\beta+1}-1)}{(q-1)(q^2-1)(q^\gamma-1)(q^{\gamma+1}-1)} x^2 + \cdots\)”, Journal für de reine und angewandte Mathematik 32 (1846), 210–212.
[65]
L. Hesselholt, “On the topological cyclic homology of the algebraic closure of a local field”, in An Alpine Anthology of Homotopy Theory, Contemporary Mathematics 399, American Mathematical Society, Providence (2006), 133–162.
[66]
M. Hochster, “Homological conjectures, old and new”, Illinois Journal of Mathematics 51 (2007), 151–169.
[67]
R. Huber, Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Springer, Wiesbaden (1996).
[68]
L. Illusie, Complexe Cotangent et Déformations I, Lecture Notes in Mathematics 239, Springer-Verlag, Berlin (1971).
[69]
L. Illusie, Complexe Cotangent et Déformations II, Lecture Notes in Mathematics 283, Springer-Verlag, Berlin (1972).
[70]
R. Ishizuka, “A calculation of the perfectoidization of semiperfectoid rings”, Nagoya Mathematical Journal, to appear.
[71]
F.H. Jackson, “On \(q\)-functions and a certain difference operator”, Transactions of the Royal Society of Edinburgh 46 (1908), 253–281.
[72]
F.H. Jackson, “\(q\)-difference equations”, American Journal of Mathematics 32 (1910), 305–314.
[73]
N. Jacobson, Basic Algebra, II, W. H. Freeman, San Francisco, (1980).
[74]
A. Joyal, “\(\delta\)-anneau et vecteurs de Witt”, C.R. Math. Rep. Acad. Sci. Canada 7 (1985), 177–182.
[75]
A. Joyal, “\(\delta\)-anneau et \(\lambda\)-anneaux, II”, C.R. Math. Rep. Acad. Sci. Canada 7 (1985), 227–232.
[76]
R. Jurrius and R. Pellikaan,
“Defining the \(q\)-analogue of a matroid”,
arXiv:1610.09250v1 22 (2016).
[77]
K. Kato, “Logarithmic structures of Fontaine-Illusie”, in Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore (1989), 191–224.
[78]
N.M. Katz, “Nilpotent connections and the monodromy theorem: applications of a result of Turrittin”, Publications Mathématiques de l’I.H.É.S 39 (1970), 175–232.
[79]
K.S. Kedlaya, “Nonarchimedean geometry of Witt vectors”, Nagoya Mathematical Journal 209 (2013), 111–165.
[80]
K.S. Kedlaya, “New methods for \((\varphi, \Gamma)\)-modules”, Research in the Mathematical Sciences 2 (2015).
[81]
K.S. Kedlaya, “Sheaves, stacks, and shtukas”, in Perfectoid Spaces: Lectures from the 2017 Arizona Winter School, Mathematical Surveys and Monographs 242, American Mathematical Society, Providence (2019).
[82]
K.S. Kedlaya and R. Liu, “Relative \(p\)-adic Hodge theory: Foundations”, Astérisque 371 (2015).
[83]
The Kerodon Authors,
Kerodon,
kerodon.net
.
[84]
R. Kiehl and R. Weissauer, Weil Conjectures, Perverse Sheaves, and \(\ell\)-adic Fourier Transform, Ergebnisse der Mathematik 42, Springer-Verlag, Berlin (2001).
[85]
M. Kisin, “Crystalline representations and \(F\)-crystals”, in Algebraic geometry and number theory, Progress in Mathematics 253, Birkhäuser Boston, Boston, MA (2006), 459–496.
[86]
D. Knutson, \(\lambda\)-Rings and the Representation Theory of the Symmetric Group, Lecture Notes in Mathematics 308, Springer, Berlin (1973).
[87]
M. Kontsevich and D. Zagier, “Periods”, in Mathematics Unlimited—2001 and Beyond, Springer, Berlin (2001), 771–808.
[88]
T. Koshikawa,
“Logarithmic prismatic cohomology I”,
arXiv:2007.14037v2 23 (2021).
[89]
E. Lau,
“Dieudonné theory over semiperfect rings and perfectoid rings”,
arXiv:1603.07831v2 24 (2016).
[90]
E. Lau,
“Divided Dieudonné crystals”,
arXiv:1811.09439v1 25 (2018).
[91]
V. Lafforgue, “Chtoucas pour les groups réductifs et paramétrisaton de Langlands globale”, Journal of the American Mathematical Society 31 (2018), 719–891.
[92]
W.E. Lang, “Two theorems on de Rham cohomology”, Compositio Mathematica 40 (1980) 417–423.
[93]
J. Lurie, Higher Topos Theory, Annals of Mathematics Studies 170, Princeton University Press, Princeton (2009).
[94]
S. Mac Lane, Categories for the Working Mathematician, second edition, Graduate Texts in Mathematics 5, Springer, New York (1978).
[95]
A.M. Masullo,
Arithmetic deformations of crystalline cohomology, PhD thesis, Stanford University, (2019), available via
Stanford Digital Repository 26 .
[96]
A. Mathew,
“Simplicial commutative rings, I”,
math.uchicago.edu/~amathew/SCR.pdf
.
[97]
M. Matignon and M. Reversat, “Sous-corps fermés d'un corps valué”, Journal of Algebra 90 (1984), 491–515.
[98]
J.S. Milne and J. Suh, “Nonhomeomorphic conjugates of connected Shimura varieties”, American Journal of Mathematics 132 (2010), 731–750.
[99]
J. Nicaise, “Berkovich Skeleta and Birational Geometry”, in Nonarchimedean and Tropical Geometry, Simons Symposia, Springer International (2016), 173–194.
[100]
J.P. Pridham, “On \(q\)-de Rham cohomology via \(\Lambda\)-rings”, Mathematische Annalen 375 (2019), 425–452.
[101]
D.G. Quillen, Homotopical Algebra, Lecture Notes in Mathematics 43, Springer-Verlag, Berlin, 1967.
[102]
C.S. Rajan, “An example of non-homeomorphic conjugate varieties”, Mathematics Research Letters 18 (2011), 937–942.
[103]
M. Raynaud and L. Gruson, “Critères de platitude et de projectivité. Techniques de “platification” d'un module”, Inventiones Mathematicae 13 (1971), 1–89.
[104]
C. Rezk, “Etale extensions of \(\lambda\)-rings”, (2019).
[105]
P. Roberts,
“The root closure of a ring of mixed characteristic”,
arXiv:0810.0215v1 27 (2008).
[106]
D. Rydh, “Submersions and effective descent of étale morphisms”, Bulletin de la Société Mathématique de France 138 (2010), 181–230.
[107]
P. Scholze, “Perfectoid spaces”, Publications Mathématiques de l’IHÉS 116 (2012), 245–313.
[108]
P. Scholze, “On torsion in the cohomology of locally symmetric spaces”, Annals of Mathematics 182 (2015), 945–1066.
[109]
P. Scholze, “Canonical \(q\)-deformations in arithmetic geometry”, Annales de la Faculté des sciences de Toulouse 26 (2017), 1163–1192.
[110]
P. Scholze,
“Étale cohomology of diamonds”,
arXiv:1709.07343v2 28 (2021).
[111]
P. Scholze,
“Prismatic crystals and crystalline Galois representations”, RAMpAGe seminar
video 29 and
notes 30 (2020).
[112]
P. Scholze and J. Weinstein, “Moduli of \(p\)-divisible groups”, Cambridge Journal of Mathematics 1 (2013), 145–237.
[113]
P. Scholze and J. Weinstein, Berkeley Lectures on \(p\)-adic Geometry, Annals of Mathematics Studies 207, Princeton University Press, Princeton (2020).
[114]
J.-P. Serre, “Géométrie algébrique et géométrie analytique”, Annales de l’institut Fourier 6 (1956), 1–42.
[115]
J.-P. Serre, “Exemples de variétés projectives conjuguées non homéomorphes”, C. R. Acad. Sci. Paris 258 (1964), 4194–4196.
[116]
J.-P. Serre, Local Fields, Graduate Texts in Mathematics 67, Springer-Verlag, New York-Berlin, (1979).
[117]
The Stacks Project Authors,
Stacks Project,
stacks.math.columbia.edu
.
[118]
R. Swan, “On seminormality”, Journal of Algebra 67 (1980), 210–229.
[119]
J. Milnor and J.D. Stasheff, Characteristic Classes, Annals of Mathematics Studies 76, Princeton University Press, Princeton (1974).
[120]
D.O. Tall and G.C. Wraith, “Representable functors and operations on rings”, Proceedings of the London Mathematical Society 20 (1970) 619–643.
[121]
J. Thomae, “Über die höheren hypergeometrische Reihen”, Mathematische Annalen 2 (1870), 427–444.
[122]
W. van der Kallen, “Descent for the \(K\)-theory of polynomial rings”, Mathematische Zeitschrift 191 (1986), 405–415.
[123]
V. Voevodsky, “Homology of schemes”, Selecta Mathematica 2 (1996), 111–153.
[124]
N. Wach, “Représentations \(p\)-adiques potentiellement cristallines”, Bull. Soc. Math. France 124 (1996), 375–400.
[125]
C. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press (1994).
[126]
C. Wilkerson, “Lambda-rings, binomial domains, and vector bundles over \(\mathbf{C}P(\infty)\)”, Communications in Algebra 10 (1982), 311–328.
[127]
E. Witt, “Zyklische Körper und Algebren der Charakteristik \(p\) vom Grad \(p^n\text{.}\) Struktur diskret bewerteter perfekter Körper mit vollkommenem Restklassenkörper der Charakteristik \(p\)”, Journal für die reine und angewandte Mathematik 176 (1937), 126–140.
[128]
D. Yau, Lambda-rings, World Scientific, Hackensack (2010).
[129]
A. Yekutieli, “On flatness and completion for infinitely generated modules over Noetherian rings”, Communications in Algebra 39 (2011), 4221–4245.
[130]
K. Yamamoto, “The Artin-Hasse-Šafarevič function”, Japanese Journal of Mathematics 29 (1959), 165–172.