Skip to main content
Contents
Dark Mode Prev Up Next
\(\def\AA{\mathbb{A}}
\def\CC{\mathbb{C}}
\def\FF{\mathbb{F}}
\def\PP{\mathbb{P}}
\def\QQ{\mathbb{Q}}
\def\RR{\mathbb{R}}
\def\ZZ{\mathbb{Z}}
\def\kbar{\overline{k}}
\def\gotha{\mathfrak{a}}
\def\gothb{\mathfrak{b}}
\def\gothm{\mathfrak{m}}
\def\gotho{\mathfrak{o}}
\def\gothp{\mathfrak{p}}
\def\gothq{\mathfrak{q}}
\def\gothr{\mathfrak{r}}
\DeclareMathOperator{\ab}{ab}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Br}{Br}
\DeclareMathOperator{\Cl}{Cl}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\Cor}{Cor}
\DeclareMathOperator{\cyc}{cyc}
\DeclareMathOperator{\disc}{Disc}
\DeclareMathOperator{\fin}{fin}
\DeclareMathOperator{\Fix}{Fix}
\DeclareMathOperator{\Frob}{Frob}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\Ind}{Ind}
\DeclareMathOperator{\Inf}{Inf}
\DeclareMathOperator{\inv}{inv}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\Norm}{Norm}
\DeclareMathOperator{\Real}{Re}
\DeclareMathOperator{\Res}{Res}
\DeclareMathOperator{\sep}{sep}
\DeclareMathOperator{\sign}{sign}
\DeclareMathOperator{\smcy}{smcy}
\DeclareMathOperator{\Trace}{Trace}
\DeclareMathOperator{\unr}{unr}
\DeclareMathOperator{\Ver}{Ver}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 7 The main results
We finally embark on the proof of the main results of global class field theory, via the adelic reformulation (
Section 6.4 ) and specifically the outline from
Section 6.5 .