If
\(a^g/a^{\omega(g)} \in (L^*)^n\) for all
\(g \in \Gal(L/K)\text{,}\) then
\(a\text{,}\) \(a^{\omega(g)}\) and
\(a^g\) all generate the same subgroup of
\((L^*)/(L^*)^n\text{.}\) Thus
\(L(a^{1/n}) = L((a^g)^{1/n})\) for all
\(g \in \Gal(L/K)\text{,}\) so
\(M/K\) is Galois. Thus it suffices to assume
\(M/K\) is Galois, then prove that
\(M/K\) is abelian if and only if
(1.2.1) holds. In this case, we must have
\(a^g/a^{\rho(g)} \in (M^*)^n\) for some map
\(\rho: \Gal(L/K) \to (\ZZ/n\ZZ)^*\text{,}\) whose codomain is cyclic by our assumption on
\(n\text{.}\)
Note that \(\Gal(M/K)\) admits a homomorphism \(\omega\) to a cyclic group whose kernel \(\Gal(M/L) \subseteq \ZZ/n\ZZ\) is also abelian. Thus \(\Gal(M/K)\) is abelian if and only if \(g\) and \(h\) commute for any \(g \in \Gal(M/K)\) and \(h \in \Gal(M/L)\text{,}\) i.e., if \(h = g^{-1}hg\text{.}\) (Since \(g\) commutes with powers of itself, \(g\) then commutes with everything.)
Let \(A \subseteq L^*/(L^*)^n\) be the subgroup generated by \(a\text{.}\) Then the Kummer pairing gives rise to a pairing
\begin{equation*}
\Gal(M/L) \times A \to \{1, \zeta_{n}, \dots, \zeta_n^{n-1}\}
\end{equation*}
which is bilinear and nondegenerate, so \(h = g^{-1}hg\) if and only if \(\langle h, s^g \rangle = \langle ghg^{-1}, s^g \rangle\) for all \(s \in A\text{.}\) But the Kummer pairing is equivariant with respect to \(\Gal(L/K)\) as follows:
\begin{equation*}
\langle h,s \rangle^g = \langle g^{-1}hg, s^g \rangle,
\end{equation*}
because
\begin{equation*}
\left( \frac{(s^{1/n})^h}{s^{1/n}} \right)^g = \frac{((s^g)^{1/n})^{g^{-1}hg}}{(s^g)^{1/n}}.
\end{equation*}
(Here by \(s^{1/n}\) I mean an arbitrary \(n\)-th root of \(s\) in \(M\text{,}\) and by \((s^g)^{1/n}\) I mean \((s^{1/n})^g\text{.}\) Remember that the value of the Kummer pairing doesn’t depend on which \(n\)-th root you choose.) Thus \(h = ghg^{-1}\) if and only if \(\langle h,s^g \rangle = \langle h,s \rangle^g\) for all \(s \in A\text{,}\) or equivalently, just for \(s=a\text{.}\) But
\begin{equation*}
\langle h,a \rangle^g = \langle h,a \rangle^{\omega(g)} = \langle h, a^{\omega(g)} \rangle.
\end{equation*}
Thus \(g\) and \(h\) commute if and only if \(\langle h, a^g \rangle = \langle h, a^{\omega(g)}\rangle\text{,}\) if and only if (by nondegeneracy) \(a^g/a^{\omega(g)} \in (L^*)^n\text{,}\) as desired.