Definition 2.4.1.
Let \(K\) be a number field. The Dedekind zeta function \(\zeta_K(s)\) is a function on the complex plane given, for \(\Real(s) > 1\text{,}\) by the absolutely convergent product and sum
\begin{equation*}
\zeta_K(s) = \prod_\gothp (1 - \Norm(\gothp)^{-s})^{-1} = \zeta_K(s) = \sum_{\gotha} \Norm(\gotha)^{-s}
\end{equation*}
where \(\gothp\) runs over the nonzero prime ideals of \(\gotho_K\) and \(\gotha\) runs over the nonzero ideals of \(\gotho_K\text{.}\)
For exmaple, if \(K = \QQ\text{,}\) then \(\zeta_K\) equals the Riemann zeta function.