Definition 6.3.1.
If \(L/K\) is an extension of number fields, we get an embedding \(\AA_K \hookrightarrow \AA_L\) as follows: given \(\alpha \in \AA_K\text{,}\) each place \(w\) of \(L\) restricts to a place \(v\) of \(K\text{,}\) so it makes sense to declare that the \(w\)-component of the image of \(\alpha\) shall equal \(\alpha_v\text{.}\) This embedding induces an inclusion \(I_K \hookrightarrow I_L\) of idèle groups.
All automorphisms of \(L/K\) act naturally on on \(\AA_L\) and \(I_L\text{.}\) More generally, if \(g \in \Gal(\overline{K}/K)\text{,}\) then \(g\) maps \(L\) to some other extension \(L^g\) of \(K\text{,}\) and \(g\) induces isomorphisms
\begin{equation*}
\AA_L \to \AA_{L^g}, \qquad I_L \cong I_{L^g}, \qquad C_L \to C_{L^g}.
\end{equation*}
Explicitly, if \((\alpha_w)_w \in \AA_L\) and \(g \in G\text{,}\) then \(g\) maps the completion \(L_w\) of \(L\) to a completion \(L_{w^g}\) of \(L^g\text{.}\) (Remember that a place \(w\) of \(L\) corresponds to an absolute value \(|\cdot|_w\) on \(L\text{;}\) the absolute value \(|\cdot|_{w^g}\) on \(L^g\) is given by \(|a^g|_{w^g} = |a|_w\text{.}\))