Skip to main content
\(\def\AA{\mathbb{A}} \def\CC{\mathbb{C}} \def\FF{\mathbb{F}} \def\PP{\mathbb{P}} \def\QQ{\mathbb{Q}} \def\RR{\mathbb{R}} \def\ZZ{\mathbb{Z}} \def\kbar{\overline{k}} \def\gotha{\mathfrak{a}} \def\gothb{\mathfrak{b}} \def\gothm{\mathfrak{m}} \def\gotho{\mathfrak{o}} \def\gothp{\mathfrak{p}} \def\gothq{\mathfrak{q}} \def\gothr{\mathfrak{r}} \DeclareMathOperator{\ab}{ab} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Br}{Br} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Cor}{Cor} \DeclareMathOperator{\cyc}{cyc} \DeclareMathOperator{\disc}{Disc} \DeclareMathOperator{\fin}{fin} \DeclareMathOperator{\Fix}{Fix} \DeclareMathOperator{\Frob}{Frob} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Ind}{Ind} \DeclareMathOperator{\Inf}{Inf} \DeclareMathOperator{\inv}{inv} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\Norm}{Norm} \DeclareMathOperator{\Real}{Re} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\sep}{sep} \DeclareMathOperator{\sign}{sign} \DeclareMathOperator{\smcy}{smcy} \DeclareMathOperator{\Trace}{Trace} \DeclareMathOperator{\unr}{unr} \DeclareMathOperator{\Ver}{Ver} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9} \newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}} \)
Notes on class field theory
Kiran S. Kedlaya
🔍
x
Search Results:
No results.
Contents
Prev
Up
Next
Contents
Prev
Up
Next
Front Matter
Colophon
Preface
1
Trailer: Abelian extensions of the rationals
The Kronecker-Weber theorem
Kummer theory
The local Kronecker-Weber theorem
2
The statements of class field theory
The Hilbert class field
Generalized ideal class groups and the Artin reciprocity law
The principal ideal theorem
Zeta functions and the Chebotaryov density theorem
3
Cohomology of groups
Cohomology of finite groups I: abstract nonsense
Cohomology of finite groups II: concrete nonsense
Homology and Tate groups
Cohomology of cyclic groups
Profinite groups and infinite Galois theory
4
Local class field theory
Overview of local class field theory
Cohomology of local fields: some computations
Local class field theory via Tate's theorem
Ramification filtrations and local reciprocity
Making the reciprocity map explicit
5
Abstract class field theory
The setup of abstract class field theory
The abstract reciprocity map
The theorems of abstract class field theory
A look ahead
6
The adelic formulation
Adèles
Idèles and class groups
Adèles and idèles in field extensions
The adelic reciprocity law and Artin reciprocity
Adelic reciprocity: what remains to be done
Adelic Fourier analysis after Tate
7
The main results
Cohomology of the idèles I: the “First Inequality”
Cohomology of the idèles II: the “Second Inequality”
An “abstract” reciprocity map
The existence theorem
Local-global compatibility
Brauer groups and the reciprocity map
Back Matter
A
Parting thoughts
Bibliography
Authored in PreTeXt
Colophon
Colophon
https://kskedlaya.org/cft
©2002–2021 Kiran S. Kedlaya